首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Specific capture of phosphopeptides from protein digests is a critical step for identification of phosphoproteins by mass spectrometry. In this study, we report a novel phosphopeptide-capture approach based on the specific interaction of phosphopeptides with a stainless steel target modified with magnetic affinity nanoparticles. The modification which was carried out by loading the suspension of nanoparticles into sample wells of the target did not require any pretreatment procedure to the target and did not involve chemical binding reactions. To isolate phosphopeptides, digests were loaded into the wells of the modified target for 10 min incubation, followed by rinsing with washing buffer to remove unbound species; matrix was then added to the captured phosphopeptides prior to analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). Capturing the phosphopeptides on the modified target simplified significantly analytical operations and reduced sample loss. This approach has been applied to solution digests of alpha-casein, beta-casein, and a mixture of five proteins; a number of phosphopeptides were confidently detected. Phosphopeptides from digests of 10 fmol beta-casein could be isolated and detected by MALDI-TOFMS with this method. In addition, this approach has been applied successfully to the isolation of phosphopeptides from in-gel digestive products of sub-pmol phosphoproteins after separation by sodium dodecyl sulfate/polyacrylamide gel electrophoresis (SDS-PAGE).  相似文献   

2.
In this study, we developed a novel microwave-assisted protein preparation and digestion method for matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry analysis and identification of proteins that involves using conductive carbon tape as a sample platform for sample preparation (reduction and alkylation) and digestion under microwave heating and as a plate for MALDI analysis. This method allows for the enzymatic digestion products of proteins to be directly analyzed by MALDI mass spectrometry and results in a marked reduction in sample loss. Our protocol requires only a small volume (1 μL) of reaction solvent, which increases the frequency of enzyme-to-protein contact, thereby resulting in more efficient digestion of sample than conventional in-solution digestion methods. To test this protocol, we used magnetic iron (II, III) oxide nanoparticles as concentrating probes to enrich phosphopeptides from a mixture of peptides in enzymatically digested protein samples. We found that the one-pot on-tape-based protein preparation and digestion under microwave heating combined with the on-tape-based enrichment method not only dramatically reduced the time required for phosphopeptides analysis but also allowed for the simultaneous identification of phosphoproteins. The advantages of our protocol include ease of use, high digestion efficiency, high specificity, and rapid (15 min) identification of proteins and enrichment of phosphopeptides in a mixture of enzymatically digested protein samples.  相似文献   

3.
Protein phosphorylation is one of the most important post-translational modifications (PTM), however, the detection of phosphorylation in proteins using mass spectrometry (MS) remains challenging. This is because many phosphorylated proteins are only present in low abundance, and the ionization of the phosphorylated components in MS is very inefficient compared to the non-phosphorylated counterparts. Recently, we have reported a selective injection technique that can separate phosphopeptides from non-phosphorylated peptides due to the differences in their isoelectric points (pI) [1]. Phosphorylated peptides from α-casein were clearly observed at low femtomole level using MALDI MS. In this work, further developments on selective injection of phosphopeptides are presented to enhance its capability in handling higher sample complexity. The approach is to integrate selective injection with a sample stacking technique used in capillary electrophoresis to enrich the sample concentration, followed by electrophoresis to fractionate the components in preparation for MALDI MS analysis. The effectiveness of the selective injection and stacking was evaluated quantitatively using a synthetic phosphopeptide as sample, with an enrichment factor of up to 600 being recorded. Next, a tryptic digest of α-casein was used to evaluate the separation and fractionation of peptides for MALDI MS analysis. The elution order of phosphopeptides essentially followed the order of decreasing number of phosphates on the peptides. Finally, to illustrate the applicability, the integrated procedure was applied to evaluate the phosphorylation of a highly phosphorylated protein, osteopontin. Up to 41 phosphopeptides were observed, which allowed us to examine the phosphorylation of all 29 possible sites previously reported [2]. A high level of heterogeneity in the phosphorylation of OPN was evident by the multiple-forms of variable phosphorylation detected for a large number of peptides.  相似文献   

4.
比较分析了强阳离子交换(SCX)与等电聚焦(IPG-IEF)技术在磷酸化蛋白质组学中的应用。采用3种标准磷酸化蛋白对SCX与IPG-IEF两种技术对磷酸化肽段富集的有效性进行考察。以HepG2细胞为复杂样本,考察SCX与IPG-IEF在实际样本中的应用情况。对SCX与IPG-IEF技术在18O标记的磷酸化蛋白质组定量研究中的应用情况进行考察。蛋白鉴定采用高准确度、高灵敏度、高分辨率的LTQ-FTICR-MS/MS质谱仪。实验表明:SCX和IPG-IEF在大规模磷酸化肽段分离过程中均有效;在复杂样本中,SCX技术的分离效果优于IPG-IEF;IPG-IEF的重复性好于SCX;在磷酸化蛋白质组定量分析结果表明,IPG-IEF技术的稳定性优于SCX。本研究为根据不同实验目的而选择适当的磷酸化蛋白质组预分离技术提供了有用信息。  相似文献   

5.
Analysis of phosphopeptides is an important task in proteomic studies. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is a technique very commonly used for such a purpose. Analysis of phosphopeptides by MALDI-MS is, however, still a challenging task due to the low ionization efficiency of phosphopeptides. In this study, we reported that by using a proton sponge 1,8-bis(dimethyl-amino)naphthalene (DMAN) as a co-matrix, detection of phosphopeptides by negative ion MALDI-MS could be greatly improved. Combination of DMAN with another matrix 6-aza-2-thiothymine (ATT) and additive diammonium hydrogen citrate (DHC) allowed much lower limit of detection, significantly reduced signal suppression effects and improved position-to-position reproducibility for detection of phosphopeptides by negative ion MALDI-MS. Potential applications of the matrix system in qualification of phosphopeptides and analysis of proteolytic digests of phosphorylated proteins were also demonstrated in this study.  相似文献   

6.
It is one of the key issues to develop powerful fractionating method to increase the identification of the low‐abundance phosphopeptides. In this study, a semi‐online 2‐D LC separation strategy based on three‐step fractionation of the enriched peptides on strong anion‐exchange trap column was developed. It was demonstrated that the sensitivity and phosphoproteome coverage obtained by this fractionating method with strong anion‐exchange trap column is much higher than those by the conventional methods based on C18 trap column. In addition, when the same amount of sample was loaded, the number of identified phosphopeptides had increased 108%. Combination of this three‐step fractionation method with RPLC‐MS/MS analysis by 300 min RP‐gradient separation was applied to phosphoproteome analysis of human liver proteins, and 853 unique phosphopeptides was positively identified from 500 μg tryptic digest of human liver proteins. After three cycles' consecutive analyses, 1554 unique phosphopeptides and 1566 phosphorylated sites were totally identified from 735 phosphorylated proteins at a false discovery rate of <1% in about 54 h of analysis time.  相似文献   

7.
Hu L  Tao WA 《色谱》2011,29(9):869-875
酪氨酸激酶在生物分子的信号转导中起着非常重要的作用,目前除抗体技术外尚无有效的化学方法能够实现对酪氨酸磷酸化蛋白或多肽的选择性富集,然而抗体通常成本较高,而且往往会有模体序列的选择性识别。本文发展了一种基于化学反应的酪氨酸磷酸化肽段的选择性富集,该方法利用了β消除反应只能发生在丝氨酸和苏氨酸磷酸化多肽的特性,以反相选择方法,从而实现对酪氨酸磷酸化肽段的选择性富集。以标准多肽对其反应效率和回收率进行了考察,20分钟内丝氨酸磷酸化多肽的β消除反应效率可达99%以上,而同时酪氨酸磷酸化肽段可保持70%的回收率。进一步以六种标准蛋白混合物的酶解产物对其进行考察,经β消除反应和亲和富集之后,只有酪氨酸磷酸化多肽可以被检测出来,该方法为蛋白质酪氨酸磷酸化的分析提供了一种新的手段。  相似文献   

8.
An efficient and simple method for enrichment and identification of phosphopeptides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using cerium oxide is presented. After pretreatment of tryptic digests of phosphoproteins with CeO(2), nonphosphopeptides are discarded and phosphopeptides are enriched. By applying the separated CeO(2) on a target plate and analysis using MALDI-TOF MS, peaks of phosphopeptides and their correspondingly series of dephosphorylated peptides are observed in the mass spectra. Thus, the phosphopeptides are very easy to identify with the mass difference, which are all 80 Da between adjacent peaks in the same series, and clear background in the spectra owing to elimination of signal suppression from large amounts of nonphosphopeptides. Furthermore, the phosphopeptides can be dephosphorylated completely after a further NH(4)OH elution. Tryptic digest products from several standard proteins are pretreated using CeO(2) to demonstrate the efficiency of this method. Phosphopeptides from a very small quantity of human serum are enriched and analyzed, and proteins also identified by searching against a database using Mascot on MALDI-TOF/TOF fragments, which indicates that this method may be employed in complex samples for further application.  相似文献   

9.
为了在短时间内获得相对含量高的磷酸化肽段,以标准磷酸化蛋白质为模型对强阳离子交换色谱(SCX)分离磷酸化肽段体系的缓冲溶液和梯度设置进行了研究,并用酵母酶切肽段混合物考察了该路线在较复杂的样品中的应用。实验结果表明优化后的体系能够在30 min内分离出磷酸肽段,而且非磷酸化肽段的干扰很少,这样便相对提高了磷酸化肽段在质谱仪中的响应强度,重要的是该体系可以对复杂样品进行很好的分离。这说明SCX用于规模化磷酸化肽段富集的策略是可行的。本研究为磷酸化蛋白质组学规模化分析提供了实用技术。  相似文献   

10.
Cyclic phosphopeptides were prepared using ring-closing metathesis followed by phosphorylation. These cyclic phosphopeptides were designed to interact with the SH2 domain of Grb2, which is a signal transduction protein of importance as a target for antiproliferative drug development. Binding of these peptides to the Grb2 SH2 domain was evaluated by a surface plasmon resonance assay. High affinity binding to the Grb2 SH2 domain was maintained upon macrocyclization, thus indicating that this method can be used to assemble high affinity cyclic phosphopeptides that interfere with signal transduction cascades.  相似文献   

11.
Detection and sequencing of phosphopeptides   总被引:4,自引:0,他引:4  
Consecutive enzymatic reactions of analytes which are affinity bound to immobilized metal ion beads with subsequent direct analysis of the products by matrix-assisted laser desorption/ionization mass spectrometry have been used for detecting phosphorylation sites. The usefulness of this method was demonstrated by analyzing two commercially available phosphoproteins, beta-casein and alpha-casein, as well as one phosphopeptide from a kinase reaction mixture. Agarose loaded with either Fe3+ or Ga3+ was used to isolate phosphopeptides from the protein digest. Results from using either metal ion were complementary. Less overall suppression effect was achieved when Ga3+-loaded agarose was used to isolate phosphopeptides. The selectivity for monophosphorylated peptides, however, was better with Fe3+-loaded agarose. This technique is easy to use and has the ability to analyze extremely complicated phosphopeptide mixtures. Moreover, it eliminates the need for prior high-performance liquid chromatography separation or radiolabeling, thus greatly simplifying the sample preparation.  相似文献   

12.
Coupling LC to GC alleviates sample preparation in the sense of preseparation, cleanup, or enrichment and replaces conventional methods such as column liquid chromatography, enrichment by or filtration through sample preparation tubes, preparative thin-layer chromatography, or liquid-liquid partitioning. LC is more efficient in separation power, more rapid, and allows fully automatic integration of sample preparation into GC. Advantages are discussed for selected applications. The transfer techniques, as well as some key requirements for an LC-GC instrument, are briefly summarized.  相似文献   

13.
The ionization of phosphorylated peptides in positive ion mode mass spectrometry is generally less efficient compared with the ionization of their non-phosphorylated counterparts. This can make phosphopeptides much more difficult to detect. One way to enhance the detection of phosphorylated proteins and peptides is by selectively isolating these species. Current approaches of phosphopeptide isolation are based on the favorable interactions of phosphate groups with immobilized metals. While these methods can be effective in the extraction, they can lead to incomplete sample recovery, particularly for the most strongly bound multiply phosphorylated components. A non-sorptive method of phosphopeptide isolation using capillary electrophoresis (CE) was recently reported [Zhang et al., Anal. Chem. 77 (2005) 6078]. The relatively low isoelectric points of phosphopeptides cause them to remain anionic at acidic sample pH. Hence, they can be selectively injected into the capillary by an applied field after the electroosmotic flow (EOF) is suppressed. The technique was previously coupled with matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). In this work, the exploitation of selective sampling in conjugation with electrospray ionization mass spectrometry (ESI-MS) is presented. The transition was not immediately straightforward. A number of major alterations were necessary for ESI interfacing. These adaptations include the choice of a suitable capillary coating for EOF control and the incorporation of organic solvent for efficient ESI. As expected, selective injection of phosphopeptides greatly enhanced the sensitivity of their detection in ESI-MS, particularly for the multiply phosphorylated species that were traditionally most problematic. Furthermore, an electrophoretic separation subsequent to the selective injection of the phosphopeptides was performed prior to analysis by ESI-MS. This allowed us to resolve the multiply phosphorylated peptides present in the samples, predominantly based on the number of phosphorylation sites on the peptides.  相似文献   

14.
Reversible protein phosphorylation plays a critical role in liver development and function. Comprehensively cataloging the phosphoproteins and their phosphorylation sites in human liver tissue will facilitate the understanding of physiological and pathological mechanisms of liver. Owing to lacking of efficient approach to fractionate phosphopeptides, nanoflow‐RPLC with long‐gradient elution was applied to reduce the complexity of the phosphopeptides in this study. Two approaches were performed to further improve the coverage of phosphoproteome analysis of human liver tissue. In one approach, ten‐replicated long‐gradient LC‐MS/MS runs were performed to analyze the enriched phosphopeptides, which resulted in the localization of 1080 phosphorylation sites from 495 proteins. In another approach, proteins from liver tissue were first fractionated by SDS‐PAGE and then long‐gradient LC‐MS/MS analysis was performed to analyze the phosphopeptides derived from each fraction, which resulted in the localization of 1786 phosphorylation sites from 911 proteins. The two approaches showed the complementation in phosphoproteome analysis of human liver tissue. Combining the results of the two approaches, identification of 2225 nonredundant phosphorylation sites from 1023 proteins was obtained. The confidence of phosphopeptide identifications was strictly controlled with false discovery rate (FDR)≤1% by a MS2/MS3 target‐decoy database search approach. Among the localized 2225 phosphorylated sites, as many as 70.07% (1559 phosphorylated sites) were also reported by others, which confirmed the high confidence of the sites determined in this study. Considering the data acquired from low accuracy mass spectrometer and processed by a conservative MS2/MS3 target‐decoy approach, the number of localized phosphorylation sites obtained for human liver tissue in this study is quite impressive.  相似文献   

15.
Titanium dioxide (TiO2)-mediated phosphopeptide enrichment has been introduced as an effective method for extracting phosphopeptides from highly complex peptide mixtures. Chemical labeling by beta-elimination/Michael addition is also useful for increasing mass intensity in phosphopeptide analysis. Both of these methods were coupled in order to simultaneously enrich phosphopeptides and allow for detection and sequencing of the enriched peptides with high mass sensitivity. Phosphopeptides were successfully enriched on TiO2 beads without the use of any hydroxy acid additives like 2,5-dihydroxybenzoic acid. Labeling was accomplished on-bead with a guanidinoethanethiol (GET) tag containing a guanidine moiety. These GET-labeled derivatives were detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). GET labeling converted phosphoserine into guanidinoethylcysteine, a structural arginine-mimic. In particular, GET-labeled lysine-terminated phosphopeptides showed dramatically increased peak intensities compared to those of the corresponding intact phosphopeptides. Additionally, the on-bead labeling minimized manipulation steps and sample loss. The coupled technique was also further validated by applying to the analysis of phosphopeptides from complex tryptic digests of phosphoprotein mixtures.  相似文献   

16.
Rare-earth phosphate microspheres with unique structures were developed as affinity probes for the selective capture and tagging of phosphopeptides. Prickly REPO(4) (RE = Yb, Gd, Y) monodisperse microspheres, that have hollow structures, low densities, high specific surface areas, and large adsorptive capacities were prepared by an ion-exchange method. The elemental compositions and crystal structures of these affinity probes were confirmed by energy-dispersive spectroscopy (EDS), powder X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy. The morphologies of these compounds were investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), and nitrogen-adsorption isotherms. The potential ability of these microspheres for selectively capturing and labeling target biological molecules was evaluated by using protein-digestion analysis and a real sample as well as by comparison with the widely used TiO(2) affinity microspheres. These results show that these porous rare-earth phosphate microspheres are highly promising probes for the rapid purification and recognition of phosphopeptides.  相似文献   

17.
We report substantial in‐situ enrichment of phosphopeptides in peptide mixtures using titanium and zirconium dioxide‐coated matrix assisted laser desorption‐ionization (MALDI) plates prepared by recently reported ambient ion landing deposition technique. The technique was able to modify four common materials currently used for MALDI targets (stainless steel, aluminum, indium‐tin oxide glass and polymeric anchor chip). The structure of the deposited dioxide was investigated by electron microscopy, and different surfaces were compared and discussed in this study. Two standard proteins were used to test the enrichment capabilities of modified MALDI plates: casein and in‐vitro phosphorylated trehalase. The enrichment of casein tryptic digest resulted in identification of 20 phosphopeptides (including miscleavages). Trehalase was used as a suitable model of larger protein that provided more complex peptide mixture after the trypsin digestion. All four possible phosphorylation sites in trehalase were identified and up to seven phosphopetides were found (including methionine oxidations and miscleavages). Two different mass spectrometers, MALDI‐Fourier transform ion cyclotron resonance (FTICR) and MALDI‐time of flight, were used to detect the phosphopeptides from modified MALDI plates after the enrichment procedure. It was observed that the desorption‐ionization phenomena on the modified surfaces are not critically influenced by the parameters of the different MALDI ion sources (e.g. different pressure, different extraction voltages), and thus the presence of dioxide layer on the standard MALDI plate does not significantly interfere with the main MALDI processes. The detection of phosphopeptides after the enrichment could be done by both instruments. Desorption electrospray ionization coupled to the FTICR was also tested, but, unlike MALDI, it did not provide satisfactory results. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
张宝会  王晨桐  郭淼  肖华 《色谱》2021,39(1):77-86
磷酸化是蛋白质翻译后修饰的重要形式之一,其异常往往会导致细胞内信号通路的紊乱和疾病的发生。固定化金属离子亲和色谱(IMAC)是磷酸化肽段的高效富集技术,在磷酸化蛋白质组研究方面应用广泛。该研究以金属钛离子(Ti4+)螯合IMAC材料(Ti4+-IMAC)为载体,进行磷酸化肽段富集。比较了10 μm Ti4+-IMAC通过振荡法和固相萃取法(SPE)富集磷酸肽的效果,发现振荡法可以富集到更多的磷酸肽;对比了两种尺寸(10 μm和30 μm)Ti4+-IMAC在磷酸化肽段富集中的差异,发现小尺寸材料富集效果更佳。进一步采用优化的策略比较了不同转移能力肺癌细胞的磷酸化蛋白质组,免标记定量蛋白质组学结果表明,优化的Ti4+-IMAC方法可以从正常的肺成纤维细胞MRC5、低转移肺癌细胞95C和高转移肺癌细胞95D中分别鉴定到510、863和1108种磷酸化蛋白质,其中317种为3组所共有。该研究共鉴定到1268种磷酸化蛋白质上的7560个磷酸化位点,其中1130个为差异磷酸化位点,文献报道显示部分异常表达的激酶与癌症转移密切相关。通过生信对比分析发现,异常表达的磷酸化蛋白质主要与细胞侵袭、迁移和死亡等细胞迁移方面的功能有关。通过优化磷酸化肽富集策略,初步阐明了磷酸化蛋白质网络的异常与肺癌转移之间的相关性,该方法有望用于肺癌进展相关的磷酸化位点、磷酸化蛋白质及其信号通路研究。  相似文献   

19.
The location of phosphorylation plays a vital role for the elucidation of biological processes. The challenge of low stoichiometry of phosphoproteins and signal suppression of phosphopeptides by nonphosphopeptides in mass spectrometry (MS) analysis makes the selective enrichment of phosphopeptides prior to MS analysis necessary. Besides the immobilized metal affinity chromatography (IMAC) method, some affinity methods based on nanoparticles displayed a higher enrichment efficiency for phosphopeptides such as Fe(3)O(4)/TiO2 and Fe(3)O(4)/ZrO(2) nanoparticles. To further improve the selectivity and compatibility of the affinity methods, a novel strategy based on magnetic nanoparticles coated with zirconium phosphonate for the enrichment of phosphopeptides has been developed in this study. Under optimized experimental conditions, 1 x 10(-9) M phosphopeptides in 50 microL tryptic digest of beta-casein could be enriched and identified successfully. Reliable results were also obtained for 1 x 10(-8) M phosphopeptides in 50 microL tryptic digest of beta-casein in the presence of nonphosphopeptides from a tryptic digest of bovine serum albumin (BSA) over 20 times in concentration. The performance of nanoparticles for use in a real sample was further demonstrated by employing the strong cation-exchange chromatography (SCX) fraction of a tryptic digest of a protein extract from Chang liver cells as a model sample. Experimental results show that the nanoparticles can be easily and effectively used for enrichment of phosphopeptides in low concentration. Most importantly, our approach is more compatible with commonly used SCX strategies than Fe(3+)-IMAC. The proposed method thus has great potential for future studies of large-scale phosphoproteomes.  相似文献   

20.
In this study, a new strategy named two‐step IMAC is demonstrated as a novel prelude to MS analysis of phosphoproteome by increasing the enrichment factor of phosphoproteins/phosphopeptides from a protein mixture. In this method, the first IMAC was performed at the protein level to extract the minute amount of phosphoproteins present in the sample. During this step, nonphosphoproteins and other undesired chemicals or inhibitors were excluded. After tryptic digestion, the second IMAC was performed at the peptide level to enrich phosphopeptides present in the tryptic digest, and the eluent from the second IMAC was analyzed by MALDI‐MS. It is particularly noticeable that the eluent from the first IMAC can be directly digested by trypsin without buffer exchange. Our results revealed that β‐casein that was spiked in a protein mixture can be successfully extracted by the first IMAC at a concentration of less than 1–3%, and the two phosphopeptides of β‐casein with single and four phosphorylation sites, respectively, can be captured by the second IMAC. It was found that the two‐step IMAC method could significantly reduce non‐specific bindings from unwanted proteins and greatly enhance the MALDI‐MS signal of phosphopeptide ions compared to the typical one‐step IMAC, by which only IMAC at the peptide level was performed. Two‐step IMAC was also found to tolerate a greater amount and a greater concentration range of proteins than one‐step IMAC, which is especially important when analyzing complicated unknown samples. Furthermore, the MS signal of phosphopeptide ions did not appear to be degraded by the presence of biological matrixes, such as the cell lysate in which the β‐casein was spiked in.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号