首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandon V  Kirby BJ 《Electrophoresis》2008,29(5):1102-1114
We discuss the structure of water at hydrophobic interfaces from the standpoint of its impact on electrokinetic phenomena in microfluidic devices fabricated from hydrophobic polymers such as Teflon or Zeonor. Water structuring at hydrophobic interfaces has been described as a source of interfacial charge (see Part 1, this issue), and dewetting phenomena, whether via depletion layers or nanobubbles, contribute to slip and enhanced apparent electrokinetic potentials. Issues concerning the impact of hydrodynamic slip and the role of diffuse interfacial structures are discussed. These issues are coupled with each other and with interfacial charge concerns, providing challenges for measurements of individual parameters.  相似文献   

2.
Zeta potential data are reviewed for a variety of polymeric microfluidic substrate materials. Many of these materials currently used for microchip fabrication have only recently been employed for generation of electroosmotic flow. Despite their recent history, polymeric microfluidic substrates are currently used extensively for microchip separations and other techniques, and understanding of the surface zeta potential is crucial for experimental design. This paper proposes the use of pC (the negative logarithm of the counterion concentration) as a useful normalization for the zeta potential on polymer substrates in contact with indifferent univalent counterions. Normalizing zeta by pC facilitates comparison of results from many investigators. The sparseness of available data for polymeric substrates prevents complete and rigorous justification for this normalization; however, it is consistent with double layer and adsorption theory. For buffers with indifferent univalent cations, normalization with the logarithm of the counterion concentration in general collapses data onto a single zeta/pC vs. pH curve, and (with the exception of PMMA) the repeatability of the data is quite encouraging. Normalization techniques should allow improved ability to predict zeta potential performance on microfluidic substrates and compare results observed with different parameters.  相似文献   

3.
This work presents analytical solutions for both pressure-driven and electroosmotic flows in microchannels incorporating porous media. Solutions are based on a volume-averaged flow model using a scaling of the Navier-Stokes equations for fluid flow. The general model allows analysis of fluid flow in channels with porous regions bordering open regions and includes viscous forces, permitting consideration of porosity and zeta potential variations near channel walls. To obtain analytical solutions problems are constrained to the linearized Poisson-Boltzmann equation and a variation of Brinkman's equation [Appl. Sci. Res., Sect. A 1, 27 (1947); 1, 81 (1947)]. Cases include one continuous porous medium, two adjacent regions of different porosities, or one open channel adjacent to a porous region, and the porous material may have a different zeta potential than that of the channel walls. Solutions are described for two geometries, including flow between two parallel plates or in a cylinder. The model illustrates the relative importance of porosity and zeta potential in different regions of each channel.  相似文献   

4.
In the present study, we investigate the implications of streaming potential on the mass flow rate control in a microfluidic device actuated by the combined application of a pulsating pressure gradient and a pulsating, externally applied, electric field. We demonstrate that the temporal dynamics due to streaming potential effects may lead to interesting non-trivial aspects of the resultant transport characteristics. Our results highlight the importance of an adequate accounting of the streaming potential effects for temporally tunable mass flow rate control strategies, which may act as a useful design artifice to augment mass flow rates in practical scenarios.  相似文献   

5.
This paper summarizes theory, experimental techniques, and the reported data pertaining to the zeta potential of silica and silicon with attention to use as microfluidic substrate materials, particularly for microchip chemical separations. Dependence on cation concentration, buffer and cation type, pH, cation valency, and temperature are discussed. The Debye-Hückel limit, which is often correctly treated as a good approximation for describing the ion concentration in the double layer, can lead to serious errors if it is extended to predict the dependence of zeta potential on the counterion concentration. For indifferent univalent electrolytes (e.g., sodium and potassium), two simple scalings for the dependence of zeta potential on counterion concentration can be derived in high- and low-zeta limits of the nonlinear Poisson-Boltzman equation solution in the double layer. It is shown that for most situations relevant to microchip separations, the high-zeta limit is most applicable, leading to the conclusion that the zeta potential on silica substrates is approximately proportional to the logarithm of the molar counterion concentration. The zeta vs. pH dependence measurements from several experiments are compared by normalizing the zeta based on concentration.  相似文献   

6.
A new scheme has been described for continuous particle separation using EOF in microfluidic devices. We have previously reported a method for particle separation, called "pinched flow fractionation (PFF)", in which size-dependent and continuous particle separation can be achieved by introducing pressure-driven flows with and without particles into a pinched microchannel. In this study, EOF was employed to transport fluid flows inside a microchannel. By controlling the applied voltage to electrodes inserted in each inlet/outlet port, the flow rates from both inlets, and flow rates distributed to each outlet could be accurately tuned, thus enabling more effective separation compared to the pressure-driven scheme. In the experiment, the particle behaviors were compared between EOF and pressure-driven flow schemes. In addition, micrometer- and submicrometer-sized particles were accurately separated and individually collected using a microchannel with multiple outlet branch channels, demonstrating the high efficiency of the presented scheme.  相似文献   

7.
Electrophoresis in capillary and microfluidic systems, used in analytical chemistry to separate charged species, are quite sensitive to surface phenomena in terms of separation performances. In order to improve theses performances, new surface functionalization techniques are required. There is a need for methods to provide fast and accurate quantification about surface charges at liquid/solid interfaces. We present a fast, simple, and low-cost technique for the measurement of the zeta-potential, via the modelization and the measurement of streaming currents. Due to the small channel cross section in microfluidic devices, the streaming current modelization is easier than the streaming potential measurement. The modelization combines microfluidic simulations based on the Navier-Stokes equation and charge repartition simulations based on the Poisson-Boltzmann equation. This method has been validated with square and circular cross section shape fused-silica capillaries and can be easily transposed to any lab-on-chip microsystems.  相似文献   

8.
9.
Comparative experiments on molecularly doped (with aromatic hydrazone) polycarbonate were performed to measure the drift mobility of excess charge carriers using carrier generation by exposure to light and ionizing radiation. Measurements showed practically complete coincidence of both mobility values and signal shapes. Compared were the results of measurements on polymer specimens with various thicknesses supported on substrates with different surface roughness, as well as for samples with or without an injecting amorphous-selenium layer. Dispersive carrier transport was observed in all cases. However, current transients sometimes displayed a plateau, depending on the sample preparation conditions. As the magnitude of generated (injected to the polymer layer) charge increased, a current spike appeared by the end of the transit time, thus indicating the emergence of local space-charge-limited current.  相似文献   

10.
Charge transport in conjugated polymers has been investigated using Monte Carlo simulations implemented on top of the Marcus theory for donor-acceptor transition rates. In particular, polaron effects and the dependency of the mobility on the temperature and the applied electric field have been studied. The conclusions are that while the qualitative temperature dependence is similar to that predicted by Miller-Abrahams theory in the Gaussian disorder model (GDM), the electric field dependence is characterized by a crossover into the Marcus inverted region, not present in the GDM. Furthermore, available analytical approximations to describe the electric field dependence of the mobility in Marcus theory fail to fit the simulation data and hence cannot be used to directly draw conclusions about the importance of polaron effects for charge transport in conjugated polymers.  相似文献   

11.
This paper presents a new electrochemical method for the detection and characterisation of aqueous droplets in an organic carrier fluid (1,2-dichloroethane) formed in flow-focusing microfluidic devices. The devices consist of a conventional flow-focusing channel 250 microm wide and 250 microm deep cast out of poly(dimethylsiloxane) (PDMS) which is sealed onto a glass substrate containing a set of microelectrodes 100 microm long. Chronoamperometric analysis of a suitable electrolyte contained in the organic phase is presented for characterising the droplet frequency and size. This chronoamperometric method is then extended to a dual working electrode approach in order to determine the velocity of the droplet. Good agreement between experimental measurements and theory was observed.  相似文献   

12.
Deformation is known to enhance the atomic mobility in disordered systems such as polymer materials. To elucidate the origin of this phenomenon, we carry out two types of simulations: molecular dynamics (MD) simulations, which determine the atomic trajectories at finite temperature, and quasi-static simulations, which determine the atomic trajectories in the limit of zero temperature (and in the limit of zero shear rate). The quasi-static simulations show discontinuous changes in properties, such as system energy and atomic mobility. We use a normal mode analysis to show that these discontinuous changes arise from fold catastrophes of the potential energy landscape, in which energy minima flatten out and the heights of energy barriers decrease to zero; this was demonstrated by normal mode frequencies following a power law with an exponent of 0.5 as the discontinuous change is approached. After the fold catastrophe, the system relaxes to a different energy minimum, giving rise to atomic displacements. These fold catastrophes are the only mechanism for diffusive atomic displacements in the quasi-static simulations, where there is no thermal energy. We compared the mean-squared displacements as a function of strain from the quasi-static simulations to those from MD simulations (which do include thermal effects)—the similarity of the values of the mean-squared displacements in these two types of simulations demonstrates that the fold catastrophes underlie the enhanced dynamics in strained polymer systems even at finite temperature. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

13.
Ya Jin  Guo-An Luo 《Electrophoresis》2003,24(7-8):1242-1252
A numerical study is presented for the electroosmotic flow (EOF) at the cross region in microfluidic chips. The distributions of the electric potential due to the electric double layer (EDL) and the external electric field are discussed and the calculation of the latter can give rough speculations on the flow tendencies in the channels during various operation modes. Simplification of the two-dimensional Navier-Stokes (N-S) equations is obtained by focusing on the solution of interior flows, and the numerical calculation results show good agreement with the experimental images. The sample leakage to the separation channel during the "float" sampling proved to be caused not only by the sample diffusion, but also by the weak extension of the sampling electric field. It is also verified that with suitable voltage configuration, the "pinch" sampling mode is better than the "float" mode in sample plug control.  相似文献   

14.
In recent years, several publications on microfluidic devices have focused on the process of electroporation, which results in the poration of the biological cell membrane. The devices involved are designed for cell analysis, transfection or pasteurization. The high electric field strengths needed are induced by placing the electrodes in close proximity or by creating a constriction between the electrodes, which focuses the electric field. Detection is usually achieved through fluorescent labeling or by measuring impedance. So far, most of these devices have only concerned themselves solely with the electroporation process, but integration with separation and detection processes is expected in the near future. In particular, single-cell content analysis is expected to add further value to the concept of the microfluidic chip. Furthermore, if advanced pulse schemes are employed, such microdevices can also enhance research into intracellular electroporation.  相似文献   

15.
Chun MS  Shim MS  Choi NW 《Lab on a chip》2006,6(2):302-309
To elaborate on the applicability of the electrokinetic micro power generation, we designed and fabricated the silicon-glass as well as the PDMS-glass microfluidic chips with the unique features of a multi-channel. Besides miniaturizing the device, the key advantage of our microfluidic chip utilization lies in the reduction in water flow rate. Both a distributor and a collector taking the tapered duct geometry are positioned aiming the uniform distribution of water flow into all individual channels of the chip, in which several hundreds of single microchannels are assembled in parallel. A proper methodology is developed accompanying the deep reactive ion etching as well as the anodic bonding, and optimum process conditions necessary for hard and soft micromachining are presented. It has been shown experimentally and theoretically that the silicon-based microchannel leads to increasing streaming potential and higher external current compared to those of the PDMS-based one. A proper comparison between experimental results and theoretical computations allows justification of the validity of our novel devices. It is useful to recognize that a material inducing a higher magnitude of zeta potential has an advantage for obtaining higher power density under the same external resistance.  相似文献   

16.
The electrophoretic mobility of polystyrene — latex (PSL) of diameter 870 Å was determined using a Laser Zee System 3000. This instrument enables automatic measurement of the electrophoretic mobility of fine particles. Effect of pH and ionic strengthI on the PSL mobility was analyzed. It was found that the mobility as a function of pH has a minimum around pH 3–4 atI=0.1, showing no isoelectric point, and that the mobility decreases with increasing ionic strength up toI=0.1 but is almost constant forI=0.1–0.2 at pH=7.34. From the mobility date, we estimated the zeta potential of PSL. We used an approximate mobility formula derived by Ohshima, Healy and White, which is considerably more accurate than Smolchowski's and Henry's formula and is applicable for fine particles with small a ( a10), where is the Debye-Hückel parameter anda is the particle radius. Further, we calculated the surface charge density of PSL using an approximate relationship. It was found that there are 2000–4000 negative charges on the PSL surface at pH=7.34. Comparison is made with the results on synaptic vesicles (SV) from brain cerebrum cortex and brush-border-membrane vesicles (BBMV) from the small intestine.  相似文献   

17.
18.
An approach to the synthesis of potentially thermotropic liquid crystalline polymers based on parallel investigation of their molecular mobility was realized. The initial idea was provoked by the observation that there exists some correspondence of molecular mobility data and the ability of a polymer to form a liquid crystalline phase. Previously this phenomenon was demonstrated on the example of a series of thermotropic main chain polymers with flexible dimethylsiloxane spacers of variable length. The relation between the structure of the main chain and local molecular mobility of different fragments was investigated in a series of regular polysiloxane-silarylenes containing rigid aromatic sequences. Molecular mobility was studied by dielectric spectroscopy in solution and in solid state. The structure of the main chain has been changed by variation of the repeated fragments' length, substituents and joint groups. The data of molecular mobility and their conformity with the chain structure were used for directed synthetic search of desired mesogenic polymers.  相似文献   

19.
We present the study of expansion of an ion cloud in the process of its drift in the ion mobility spectrometer taking into account the influence of diffusion and electric field of the space charge of the ion cloud. Nonlinear integro-differential equation describing these effects was obtained and solved numerically in the one-dimensional case. We found a threshold value of the ion density, above which the nonlinear effects associated with the space-charge field become significant, which agrees well with the experimental data and the criterion of Spangler. These nonlinear effects lead to the fact that the spatial ion distribution ceases to be Gaussian, and with good accuracy are approximated by the distribution of Kohlrausch–Williams–Watts.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号