首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The preparation of integrated, electrically contacted, flavoenzyme and NAD(P)(+)-dependent enzyme-electrodes is described. The reconstitution of apo-glucose oxidase, apo-GOx, on a FAD cofactor linked to a pyrroloquinoline quinone (PQQ) phenylboronic acid monolayer yields an electrically contacted enzyme monolayer (surface coverage 2.1 x 10(-)(12) mol cm(-)(2)) exhibiting a turnover rate of 700 s(-)(1) (at 22 +/- 2 degrees C). The system is characterized by microgravimetric quartz-crystal microbalance analyses, Faradaic impedance spectroscopy, rotating disk electrode experiments, and cyclic voltammetry. The performance of the enzyme-electrode for glucose sensing is described. Similarly, the electrically contacted enzyme-electrodes of NAD(P)(+)-dependent enzymes malate dehydrogenase, MalD, and lactate dehydrogenase, LDH, are prepared by the cross-linking of affinity complexes generated between the enzymes and the NADP(+) and NAD(+) cofactors linked to a pyrroloquinoline quinone phenylboronic acid monolayer, respectively. The MalD enzyme-electrode (surface coverage 1.2 x 10(-)(12) mol cm(-)(2)) exhibits a turnover rate of 190 s(-)(1), whereas the LDH enzyme-electrode (surface coverage 7.0 x 10(-)(12) mol cm(-)(2)) reveals a turnover rate of 2.5 s(-)(1). Chronoamperometric experiments reveal that the NAD(+) cofactor is linked to the PQQ-phenylboronic acid by two different binding modes. The integration of the LDH with the two NAD(+) cofactor configurations yields enzyme assemblies differing by 1 order of magnitude in their bioelectrocatalytic activities.  相似文献   

2.
Electropolymerization of aniline in the presence of poly(acrylic acid) on Au electrodes yields a polyaniline/poly(acrylic acid) composite film, exhibiting reversible redox functions in aqueous solutions at pH = 7.0. In situ electrochemical-SPR measurements are used to identify the dynamics of swelling and shrinking of the polymer film upon the oxidation of the polyaniline (PAn) to its oxidized state (PAn(2+)) and the reduction of the oxidized polymer (PAn(2+)) back to its reduced state (PAn), respectively. Covalent attachment of N(6)-(2-aminoethyl)-flavin adenin dinucleotide (amino-FAD, 1) to the carboxylic groups of the composite polyaniline/poly(acrylic acid) film followed by the reconstitution of apoglucose oxidase on the functional polymer yields an electrically contacted glucose oxidase of unprecedented electrical communication efficiency with the electrode: electron-transfer turnover rate approximately 1000 s(-1) at 30 degrees C. In situ electrochemical-SPR analyses are used to characterize the bioelectrocatalytic functions of the biomaterial-polymer interface. The current responses of the bioelectrocatalytic system increase as the glucose concentrations are elevated. Similarly, the SPR spectra of the system are controlled by the concentration of glucose. The glucose concentration controls the steady-state concentration ratio of PAn/PAn(2+) in the film composition. Therefore, the SPR spectrum of the film measured upon its electrochemical oxidation is shifted from the spectrum typical for the oxidized PAn(2+) at low glucose concentration to the spectrum characteristic of the reduced PAn at high glucose concentration. Similarly, the polyaniline/poly(acrylic acid) film acts as an electrocatalyst for the oxidation of NADH. Accordingly, an integrated bioelectrocatalytic assembly was constructed on the electrode by the covalent attachment of N(6)-(2-aminoethyl)-beta-nicotinamide adenine dinucleotide (amino-NAD(+), 2) to the polymer film, and the two-dimensional cross-linking of an affinity complex formed between lactate dehydrogenase and the NAD(+)-cofactor units associated with the polymer using glutaric dialdehyde as a cross-linker. In situ electrochemical-SPR measurements are used to characterize the bioelectrocatalytic functions of the system. The amperometric responses of the system increase as the concentrations of lactate are elevated, and an electron-transfer turnover rate of 350 s(-1) between the biocatalyst and the electrode is estimated. As the PAn(2+) oxidizes the NADH units generated by the biocatalyzed oxidation of lactate, the PAn/PAn(2+) steady-state ratio in the film is controlled by the concentration of lactate. Accordingly, the SPR spectrum measured upon electrochemical oxidation of the film is similar to the spectrum of PAn(2+) at low lactate concentration, whereas the SPR spectrum resembles that of PAn at high concentrations of lactate.  相似文献   

3.
本文以乙醇脱氢酶(ADH)和胆红素氧化酶(BOD)为生物催化剂,以碳纳米管为电极材料,构筑了全酶型乙醇/氧气生物燃料电池. 将乙醇脱氢酶负载于单壁碳纳米管(SWCNT)上,采用亚甲基绿(MG)为NADH的电化学催化剂,实现乙醇的生物电化学催化氧化,制备了生物燃料电池ADH/MG/SWCNT/GC的电极(阳极). 同时,将胆红素氧化酶固定于单壁碳纳米管上,通过其直接电子转移,实现了氧气的生物电化学催化还原,制得生物燃料电池的BOD/SWCNT/GC阴极. 据此构筑了全酶型的无膜生物燃料电池,在空气饱和40 mmol·L-1乙醇磷酸缓冲溶液中该电池开路电压为0.53 V,最大输出功率密度为11 μW·cm-2. 以商品化伏特酒作为燃料,该生物燃料电池最大输出功率为3.7 μW·cm-2.  相似文献   

4.
An electrically contacted glucose dehydrogenase (GDH) enzyme electrode is fabricated by the reconstitution of the apo-GDH on pyrroloquinoline quinone (PQQ)-functionalized Au nanoparticles (Au-NPs), 1.4 nm, associated with a Au electrode. The Au-NPs functionalized with a single amine group were attached to the Au surface by 1,4-benzenedithiol bridges, and PQQ was covalently linked to the Au-NPs. The apo-GDH was then reconstituted on the PQQ cofactor sites. The surface coverage of GDH corresponded to 1.4 x 10(-12) mol cm(-2). The reconstituted enzyme revealed direct electrical contact with the electrode surface, and the bioelectrocatalytic oxidation of glucose occurred with a turnover number of 11,800 s(-1). In contrast, a system that included the covalent attachment of GDH to the PQQ-Au-NPs monolayer in a random, nonaligned, configuration revealed lack of electrical communication between the enzyme and the electrode, albeit the enzyme existed in a bioactive structure. The bioelectrocatalytic function of the later system was, however, activated by the diffusional electron mediator 2,6-dichlorophenol-indophenol. The results imply that the alignment of GDH on a Au-NP through the reconstitution process leads to an electrically contacted enzyme-electrode, where the Au-NP acts as a charge-transfer mediator.  相似文献   

5.
Integration of redox enzymes with an electrode support and formation of an electrical contact between the biocatalysts and the electrode is the fundamental subject of bioelectronics and optobioelectronics. This review addresses the recent advances and the scientific progress in electrically contacted, layered enzyme electrodes, and discusses the future applications of the systems in various bioelectronic devices, for example, amperometric biosensors, sensoric arrays, logic gates, and optical memories. This review presents the methods for the immobilization of redox enzymes on electrodes and discusses the covalent linkage of proteins, the use of supramolecular affinity complexes, and the reconstitution of apo-redox enzymes for the nanoengineering of electrodes with protein monolayers of electrodes with protein monolayers and multilayers. Electrical contact in the layered enzyme electrode is achieved by the application of diffusional electron mediators, such as ferrocene derivatives, ferricyanide, quinones, and bipyridinium salts. Covalent tethering of electron relay units to layered enzyme electrodes, the cross-linking of affinity complexes formed between redox proteins and electrodes functionalized with relay-cofactor units, or surface reconstitution of apo-enzymes on relay-cofactor-functionalized electrodes yield bioelectrocatalytic electrodes. The application of the functionalized electrodes as biosensor devices is addressed and further application of electrically "wired" enzymes as catalytic interfaces in biofuel cells is discussed. The organization of sensor arrays, self-calibrated biosensors, or gated bioelectronic devices requires the microstructuring of biomaterials on solid supports in the form of ordered micro-patterns. For example, light-sensitive layers composed of azides, benzophenone, or diazine derivatives associated with solid supports can be irradiated through masks to enable the patterned covalent linkage of biomaterials to surfaces. Alternatively, patterning of biomaterials can be accomplished by noncovalent interactions (such as in affinity complexes between avidin and a photolabeled biotin, or between an antibody and a photoisomerizable antigen layer) to provide a means of organizing protein microstructures on surfaces. The organization of patterned hydrophilic/hydrophobic domains on surfaces, by using photolithography, stamping, or micromachining methods, allows the selective patterning of surfaces by hydrophobic, noncovalent interactions. Photoactivated layered enzyme electrodes act as light-switchable optobioelectronic systems for the amperometric transduction of recorded photonic information. These systems can act as optical memories, biomolecular amplifiers, or logic gates. The photoswitchable enzyme electrodes are generated by the tethering of photoisomerizable groups to the protein, the reconstitution of apo-enzymes with semisynthetic photoisomerizable cofactor units, or the coupling of photoisomerizable electron relay units.  相似文献   

6.
《Electroanalysis》2005,17(18):1616-1626
The rotation of redox‐functionalized magnetic particles (MPs) by means of an external magnet is a common practice for enhancing bioelectrocatalytic processes and for the amplification of biosensing events. The current densities generated by rotating redox‐functionalized MPs in two bioelectrocatalytic systems are compared to the current densities generated by rotating disc electrodes (RDE) functionalized with similar redox functionalities. The bioelectrocatalytic systems consist of pyrroloquinoline quinone (PQQ)‐functionalized MPs that oxidize NADH, and ferrocene‐functionalized MPs that mediate the bioelectrocatalyzed oxidation of glucose in the presence of glucose oxidase. The results reveal that only ca. 1% of the area of the redox‐functionalized MPs are electrically contacted with the electrode. Also, the current densities generated by the rotating MPs at high rotation speeds are lower than theoretically expected, presumably due to lose of electrical contact between the MPs and the electrode, and incoherent rotation of the particles on the electrode, due to insufficient magnetization. The comparison of the current densities in the bioelectrocatalytic systems in the presence of the rotating redox‐functionalized MPs to the analogous RDE systems allows us to elucidate the kinetics of electron transfer at the redox‐active MPs.  相似文献   

7.
A membrane electrode assembly (MEA) for hydrogen fuel cells has been fabricated using single-walled carbon nanotubes (SWCNTs) support and platinum catalyst. Films of SWCNTs and commercial platinum (Pt) black were sequentially cast on a carbon fiber electrode (CFE) using a simple electrophoretic deposition procedure. Scanning electron microscopy and Raman spectroscopy showed that the nanotubes and the platinum retained their nanostructure morphology on the carbon fiber surface. Electrochemical impedance spectroscopy (EIS) revealed that the carbon nanotube-based electrodes exhibited an order of magnitude lower charge-transfer reaction resistance (R(ct)) for the hydrogen evolution reaction (HER) than did the commercial carbon black (CB)-based electrodes. The proton exchange membrane (PEM) assembly fabricated using the CFE/SWCNT/Pt electrodes was evaluated using a fuel cell testing unit operating with H(2) and O(2) as input fuels at 25 and 60 degrees C. The maximum power density obtained using CFE/SWCNT/Pt electrodes as both the anode and the cathode was approximately 20% better than that using the CFE/CB/Pt electrodes.  相似文献   

8.
Immobilisation of enzymes is important for applications such as biosensors or biofuel cells. A poly(histidine) tag had been introduced on the C terminus of a lactate dehydrogenase enzyme. This mutant enzyme was then immobilised onto poly(aniline) (PANi)-poly(anion) composite films, PANi-poly(vinylsulfonate) (PVS) or PANi-poly(acrylate) (PAA). The NADH produced by the immobilised enzyme in the presence of beta-nicotinamide adenine dinucleotide (NAD(+)) and lactate is oxidised at the poly(aniline)-coated electrode at 0.05 to 0.1 V vs. saturated calomel electrode (SCE) at 35 degrees C.  相似文献   

9.
The effect of a constant magnetic field on bioelectrocatalytic transformations of three different enzyme assemblies linked to electrodes is examined and correlated with a theoretical magnetohydrodynamic model. The systems consist of surface-reconstituted glucose oxidase (GOx), an integrated lactate dehydrogenase/nicotinamide/pyrroloquinoline quinone assembly (LDH/NAD+ -PQQ), and a cytochrome c/cytochrome oxidase system (Cyt c/COx) linked to the electrodes. Pronounced effects of a constant magnetic field applied parallel to the electrode surface are observed for the bioelectrocatalyzed oxidation of glucose and lactate by the GOx-electrode and LDH/NAD+ -PQQ-electrode, respectively. The enhancement of the bioelectrocatalytic processes correlates nicely with the magnetohydrodynamic model, and the limiting current densities (iL) relate to B1/3 (B = magnetic flux density) and to C4/3 (C* = bulk concentration of the substrate). A small magnetic field effect is observed for the Cyt c/COx-electrode, and its origin is still questionable. The effect of the constant magnetic field on the performance of biofuel cells with different configurations is examined. For the biofuel cell consisting of LDH/NAD+ -PQQ anode and Cyt c/COx cathode, a 3-fold increase in the power output was observed at an applied magnetic field of B = 0.92 T and external load of 1.2 kOhms.  相似文献   

10.
《Electroanalysis》2006,18(6):587-594
This study describes the direct electron transfer of multi‐copper oxidases, i.e., laccase (from Trametes versicolor) and bilirubin oxidase (BOD, from Myrothecium verrucaria) at multiwalled carbon nanotubes (MWNTs) noncovalently functionalized with biopolymers of cellulose derivatives, i.e., hydroxyethyl cellulose (HEC), methyl cellulose (MC), and carboxymethyl cellulose (CMC). The functionalization of the MWNTs with the cellulose derivatives is found to substantially solubilize the MWNTs into aqueous media and to avoid their aggregation on electrode surface. Under anaerobic conditions, the redox properties of laccase and BOD are difficult to be defined with cyclic voltammetry at either laccase/MWNT‐modified or BOD/MWNT‐modified electrodes. The direct electron transfer properties of laccase and BOD are thus studied in terms of the bioelectrocatalytic activities of the laccase/MWNT‐modified and BOD/MWNT‐modified electrodes toward the reduction of oxygen and found to be facilitated at the functionalized MWNTs. The possible application of the laccase‐catalyzed O2 reduction at the laccase/MWNT‐modified electrode is illustrated by constructing a CNT‐based ascorbate/O2 biofuel cell with the MWNT‐modified electrode as the anode for the oxidation of ascorbate biofuel.  相似文献   

11.
The key characteristics of multicopper oxidases are redox potentials of Type 1, Type 2 and Type 3 copper centers of enzymes. However, there is still a challenge to obtain a value of the redox "signature" of the enzymes. In this study, the electrochemical behavior of T1 and T2/T3 redox copper centers of bilirubin oxidase (BOD) from the fungi Myrothecium verrucaria was studied based on direct bioelectrocatalysis. Two distinct redox peaks corresponding to reduction and oxidation of T1 and T2/T3 redox centers of enzymes have been clearly detected in anaerobic conditions. The bioelectrocatalytic activity of the enzyme was studied in the presence of oxygen and redox mediators. The electron-transfer rate constant for BOD immobilized on carbon electrode (CE) is 1.5 s(-1). The mechanism of enzyme inactivation by ABTS has been proposed. The physical architecture of BOD layers immobilized on the electrode surface, including elemental and chemical composition, relative thickness and assembly of layers was investigated by Angle Resolved X-ray photoelectron spectroscopy. Unique peaks of BOD at 288.5 eV and of CE at 284.6 eV were used in a substrate over layer model for estimation of the thickness of the of BOD film on the carbon electrode surface.  相似文献   

12.
Tang N  Zheng J  Sheng Q  Zhang H  Liu R 《The Analyst》2011,136(4):781-786
A novel H(2)O(2) sensor based on enzymatically induced deposition of electroactive polyaniline (PANI) at a horseradish peroxide (HRP)/aligned single-wall carbon nanotubes (SWCNTs) modified Au electrode is fabricated, and its electrochemical behaviors are investigated. Electrochemical impedance spectroscopy of the sensor confirmed the formation of PANI on SWCNTs through the HRP catalytic reaction. Cyclic voltammograms of PANI/HRP/SWCNTs modified Au electrodes showed a pair of well-defined redox peaks of PANI with reduction peak potentials of 0.211 and oxidation peak potentials of 0.293 V in 0.1 M HOAc-NaOAc (pH 4.3) solution. The oxidation peak current response of PANI is linearly related to H(2)O(2) concentration from 2.5 μM to 50.0 μM with a correlation coefficient of 0.9923 and a sensitivity of 200 μA mM(-1). The detection limit is determined to be 0.9 μM with a signal-to-noise ratio of 3. Thus, the synergistic performance of the enzyme, the highly efficient polymerization of PANI, and the templated deposition of SWCNTs provided an extensive platform for the design of novel electrochemical biosensors.  相似文献   

13.
Ruan C  Li Y 《Talanta》2001,54(6):791-1103
A bienzyme biosensor based on tyrosinase and horse-radish peroxidase is described in a flow injection analysis and cyclic voltammetry for measurement of phenol. Tyrosinase and horse-radish peroxidase were immobilized on the surface of a glassy carbon electrode by bovine serum albumin and glutaric dialdehyde. Phenol was oxidized by tyrosinase and horse-radish peroxidase via catechol to o-quinone in the presence of oxygen and hydrogen peroxide. The o-quinone was reduced to produce catechol (the substrate recycling) on the electrode surface. The enhanced sensitivity of the bienzyme electrode to phenol was observed in the flow injection system comparing with tyrosinase and horse-radish peroxidase monoenzyme electrodes. The mechanisms for enhanced amperometric response to phenol of bienzyme electrode were discussed. The biosensor was used to detect alkaline phosphatase (ALP). A detection limit of 1.4×10−15 M ALP (140 zmol/100 μl) was obtained after 1 h incubation with phenyl phosphate.  相似文献   

14.
Single‐walled carbon nanotubes (SWCNTs) were immobilized on glassy carbon (GC) electrode by drop casting The resulting modified electrode (represented as GC/SWCNTs) efficiently oxidizes acetaminophen (AC), dopamine (DA) and pyridoxine (PY) by decreasing the respective oxidation potentials and increasing peak currents in comparison to bare GC electrode. The extent of lowering of overpotentials is in the order of AC>PY>DA, in agreement with the order of decrease in the HOMO‐LUMO energy gap (ΔE) of these analytes, as determined from Density Functional Theory (DFT) calculations. DFT calculations further reveal that due to the interaction of the analytes on the SWCNT(10,10) there is a negative charge density transfer (higher probability of electron transfer, lower ΔE value) to the frontier molecular orbitals of the analytes, which eases their oxidation. Since AC, DA and PY oxidize distinctly at distinct potential values, the present SWCNTs modified electrodes could be used to simultaneously determine them. Cyclic voltammetry, differential pulse voltammetry and amperometry techniques are utilized to understand the electrochemical characteristics of the analytes (AC, DA and PY) and subsequent sensing of them at the GC/SWCNTs electrode. The electrode is then applied to the determination of AC as a case study. Sensitivity, detection limit and linear calibration range for the AC are found to be 7.9 μA μM?1 cm?2, 1.1 μM and 2.0–100.0 μM, respectively. The increased electroactive surface area of the GC/SWCNTs increases the oxidation peak currents and hence increases the sensitivity of the determination.  相似文献   

15.
《Analytical letters》2012,45(17):3161-3176
Abstract

A wealth of information on the reactions of redox-active sites in proteins can be obtained by voltammetric studies in which the protein sample is arranged as a layer on a suitable electrode surface. Here, we describe a method for the performance of a tyrosinase/single-walled carbon nanotubes/glassy carbon (Tyr/SWCNTs/GC) electrode, prepared by the modification of GC electrode surface by SWCNTs and adsorption of tyrosinase on the SWCNT surfaces. SWCNTs were studied with the help of scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM). The dimensions of SWCNTs make them ideal candidates for the adsorption of proteins. The copper-containing enzyme, tyrosinase, exhibited an electrical contact with the electrode, because of the structural alignment of the enzyme on the SWCNT surfaces. The apparent Michaelis–Menten constant (K m) for dopamine (DA) and the stability of the enzyme electrode were estimated. This method could be suitable for applications to nanofabricated devices.  相似文献   

16.
A novel method to generate an integrated electrically contacted glucose dehydrogenase electrode by the surface reconstitution of the apo-enzyme on a pyrroloquinoline quinone (PQQ)-modified polyaniline is described. In situ electrochemical surface plasmon resonance (SPR) is used to characterize the bioelectrocatalytic functions of the system.  相似文献   

17.
Cai CX  Xue KH  Zhou YM  Yang H 《Talanta》1997,44(3):339-347
Alcohol dehydrogenase (ADH) has been immobilized on a nickel hexacyanoferrate modified microband gold electrode surface by a glutaraldehyde/bovine serum albumin (BSA) cross-linking procedure to provide a new amperometric sensor for the assay of ethanol. The resulting enzyme electrode exhibits excellent electrocatalysis for the oxidation of reduced nicotinamide-adenine dinucleotide (NADH). The amperometric determination is based on the electrochemical detection of NADH which is generated in the enzymatic reaction of ethanol with NAD(+) under catalysis of ADH. The influence of various experimental conditions was examined for the determination of the optimum analytical performance. The sensor responds rapidly to ethanol with a detection limit of (5.0 +/- 0.3) x 10(-7) mol 1(-1). The response current increases linearly with ethanol concentration up to 5 mmol 1(-1). The sensor remains relatively stable for about 1 week.  相似文献   

18.
The transfer of nanoscale properties from single-walled carbon nanotubes (SWCNTs) to macroscopic systems is a topic of intense research. In particular, inorganic composites of SWCNTs and metal oxide semiconductors are being investigated for applications in electronics, energy devices, photocatalysis, and electroanalysis. In this work, a commercial SWCNT material is separated into fractions containing different conformations. The liquid fractions show clear variations in their optical absorbance spectra, indicating differences in the metallic/semiconducting character and the diameter of the SWCNTs. Also, changes in the surface chemistry and the electrical resistance are evidenced in SWCNT solid films. The starting SWCNT sample and the fractions as well are used to prepare hybrid electrodes with titanium dioxide (SWCNT/TiO2). Raman spectroscopy reflects the optoelectronic properties of SWCNTs in the SWCNT/TiO2 electrodes, while the electrochemical behavior is studied by cyclic voltammetry. A selective development of charge transfer characteristics and double-layer behavior is achieved through the suitable choice of SWCNT fractions.  相似文献   

19.
An amperometric sensor for amino acids based on the immobilization of amino acid oxidase on the surface of a CuPtCl(6)/GC is described. The amperometric current is due to the oxidation of H2O2 liberated during the enzyme reaction on the surface of the enzyme electrode. The electrode response characteristics as well as kinetic parameters have been evaluated. The enzyme electrode was characterized as an electrochemical biosensor, which was used as detector in high performance liquid chromatography (HPLC) for the determination of a mixture of amino acids with satisfactory results.  相似文献   

20.
The nano-hybrids were prepared by in situ polymerization of redox active TpPa-COFs together with single-walled carbon nanotubes (SWCNTs) under solvothermal conditions. The improvement of electrochemical performances of covalent organic frameworks (COFs) wires incorporated with SWCNTs makes the structure a guidance for application of COFs in electrical energy storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号