首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 7 毫秒
1.
2.
Bio-logic-al: an autonomous, integrated "sense-act-treat" system that is based on an enzymatic biofuel cell has been developed. The system couples a biocomputing logic-detection method with a drug-release system to provide a logic-activated therapeutic intervention in response to a simulated abnormal physiological state, without the need for an external power source, control electronics, or microelectromechanical actuators.  相似文献   

3.
Different types of carbon nanotube material (single-walled carbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs) of different internal diameter) have been used for preparation of CNT-modified glassy-carbon electrodes. Redox reactions involving ferricyanide and hydrogen peroxide were examined at the CNT-modified electrodes. Electrodes modified with SWCNTs usually had better electron-transfer properties than MWCNT-modified electrodes. Glucose biosensors were also prepared with electropolymerized polyphenylenediamine films, CNT materials, and glucose oxidase. Amperometric behavior in glucose determination was examined. SWCNT-modified glucose biosensors usually had a wider dynamic range (from 0.1 to 5.5 mmol L−1) and greater sensitivity in glucose determination. The detection limit was estimated to be 0.05 mmol L−1.  相似文献   

4.
5.
In this tutorial review the basic approaches to establish electrochemical communication between redox-active proteins and electrodes are elucidated and examples for applications in electrochemical biosensors, biofuel cells and nanotechnology are presented. The early stage of protein electrochemistry is described giving a short overview over electron transfer (ET) between electrodes and proteins, followed by a brief introduction into experimental procedures for studying proteins at electrodes and possible applications arising thereof. The article starts with discussing the electrochemistry of cytochrome c, the first redox-active protein, for which direct reversible ET was obtained, under diffusion controlled conditions and after adsorption to electrodes. Next, examples for the electrochemical study of redox enzymes adsorbed on electrodes and modes of immobilization are discussed. Shortly the experimental approach for investigating redox-active proteins adsorbed on electrodes is outlined. Possible applications of redox enzymes in electrochemical biosensors and biofuel cells working by direct ET (DET) and mediated ET (MET) are presented. Furthermore, the reconstitution of redox active proteins at electrodes using molecular wire-like units in order to "wire" the proteins to the electrode surface and possible applications in nanotechnology are discussed.  相似文献   

6.
7.
Enzymatic biofuel cells (EBFCs) for direct biochemical energy conversion are a promising candidate for addressing the growing power demands for low-power implantable and wearable devices. EBFCs comprise electrodes modified with biorecognition elements that produce bioelectrical energy from the redox activity of an organic fuel (sugars, alcohols) and an oxidant at the surface of the anode and cathode. The biorecognition layers are carefully constructed using enzymes immobilized on the electrode via surface modification strategies to increase the enzyme loading and hence the turnover rate. In addition, a polymer encapsulation membrane is implemented to create a protective microenvironment for the enzymes to enhance the biofuel cell's productivity. In this brief review, the different methods carried out to improve the stability of the EBFC system are discussed. New trends and key challenges are presented to illustrate the importance of the various materials implemented in extending the operational lifetime of EBFCs.  相似文献   

8.
《先进技术聚合物》2018,29(4):1219-1226
The preparation and characterization of the nanocomposite polyelectrolyte membranes, based on Nafion, sulfonated multi‐walled carbon nanotubes (MWCNT‐SO3H) and imidazole modified multi‐walled carbon nanotubes (MWCNT‐Im), for direct methanol fuel cell applications is described. The results showed that the modification of multi‐walled carbon nanotubes (MWCNT) with proton‐conducting groups (sulfonic acid groups or imidazole groups) could enhance the proton conductivity of the nanocomposite membranes in comparison to Nafion 117. Regarding the interactions between the protonated imidazole groups, grafted on the surface of MWCNT, and the negatively charged sulfonic acid groups of Nafion, new electrostatic interactions can be formed in the interface of the Nafion and MWCNT‐Im, which result in both lower methanol permeability and higher proton conductivity. The physical characteristics of these manufactured nanocomposite membranes were investigated by thermogravimetric analysis, differential scanning calorimetry, Fourier transform infrared spectroscopy, water uptake, methanol permeability, and ion exchange capacity, as well as proton conductivity. The Nafion/MWCNT‐Im membranes showed the higher proton conductivity, lower methanol permeability, and, as a consequence, a higher selectivity parameter in comparison to the neat Nafion or Nafion membrane containing MWCNT‐SO3H or ─OH functionalized multi‐walled carbon nanotubes (MWCNT‐OH) membranes. The obtained results indicated that the Nafion/MWCNT‐Im membranes could be used as efficient polyelectrolyte membranes for direct methanol fuel cell applications.  相似文献   

9.
This work reports the synthesis of single‐wall carbon nanotubes (SWCNT) covalently functionalized with polylysine (Plys) and the analytical performance of glassy carbon electrodes (GCE) modified with this material (GCE/SWCNT‐Plys). The resulting electrodes showed an important decrease in the overvoltages for the oxidation of ascorbic acid, uric acid and hydrogen peroxide as well as for the reduction of hydrogen peroxide. The favorable interaction of glucose oxidase (GOx) with SWCNT‐Plys allowed the sensitive and selective glucose biosensing at ?0.100 V without any permselective membrane. The proposed sensor was challenged with different real samples without pretreatment showing an excellent correlation with the reported values.  相似文献   

10.
An analytical methodology based on a field-effect transistor detector using carbon nanotubes (NTFET) coupled to a gas chromatograph has been developed for the speciation of the following aromatic compounds: benzene, toluene, ethylbenzene, m-xylene, p-xylene and o-xylene (BTEX). This methodology combines the proven separation capability of gas chromatography (GC) with the potential for detection of a NTFET. The developed analyzer shows a high and stable analytical response upon repeated analysis of BTEX during 4 weeks, with detection limit less than 4 μg/L. The GC–NTFET system also shows a great suitability for actual monitoring of indoor atmospheres and no significant difference was observed between the results obtained by the developed analyzer and a more classical analytical methodology, namely gas chromatography–flame ionization detection (GC–FID).  相似文献   

11.
The activity and enantiomeric excess (ee) (in some cases >85%) obtained for the asymmetric addition of trimethylsilyl cyanide to aldehydes using different heterogeneous chiral catalysts are compared. A library of recoverable catalysts was developed by immobilization of a chiral vanadyl salen complex having a terminal carbon-carbon double bond onto a series of scaffolds including silica, single-wall carbon nanotubes, activated carbon and room-temperature ionic liquids. The covalent linkage has been achieved by radical initiated addition of mercapto groups to CC. The highest enantiomeric excesses, similar to those obtained in the homogeneous phase, were achieved using silica as support or with the homogeneous tetra-tert-butyl salen catalyst dissolved in an imidazolium ionic liquid. The use of silica as support permits an easier separation and reuse of the catalyst from the reaction media.  相似文献   

12.
Hybrid organic/inorganic composite polymer electrolyte membranes based on a poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) grafted membrane and varying concentrations of zeolite were investigated for application in proton exchange membrane fuel cells (PEMFC). A proton conducting comb copolymer consisting of poly(vinylidene fluoride‐co‐chlorotrifluoroethylene) backbone and poly(styrene sulfonic acid) (PSSA) side chains, i.e. P(VDF‐co‐CTFE)‐g‐PSSA (graft copolymer) with 47 wt% of PSSA was synthesized using atom transfer radical polymerization (ATRP) and solution blended with zeolite. Upon incorporation of zeolite, the symmetric stretching band of both SO group (1169 cm?1) and the ? OH group (3426 cm?1) shifted to lower wavenumbers. The shift in these FT‐IR spectra suggests that the zeolite particles strongly interact with the sulfonic acid groups of PSSA chains. When the weight percent of zeolite 5A is above 7%, the proton conductivity at room temperature was reduced to 0.011 S/cm. The water uptake of the composite membranes decreased from 234 to 125% with an increase of the zeolite 5A weight percent to 10 wt%. The decrease in water uptake is likely a result of the decrease in the number of available water absorption sites because of the hydrogen bonding interactions between the zeolite particles and the graft copolymer matrix. This behavior is successfully investigated by scanning electron microscopy (SEM). The results of thermal gravimetric analysis (TGA) also showed that all the membranes were stable up to 300°C. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Multi-component tungsten carbide-based hybrid materials featuring different heteroatom dopants coated with X,N dual-doped carbon layers (X/W2C@X,N-C, XWXNC) were prepared by selecting Keggin-type polyoxometalates (POMs) (NH4)n[XW12O40] (X=Co, Si, Ge, B, and P) and dicyandiamide (DCA) as precursors. The electrocatalytic activity of these nanocomposites as counter electrode (CE) catalysts for dye-sensitized solar cells (DSSCs) was systematically investigated. Structure characterizations show that X,N heteroatoms were successfully introduced into the W2C and carbon frameworks. The obtained X,N dual-doped carbon layers were modified and loaded with W2C nanoparticles, promoting the improvement of catalytic performance by a synergistic effect. The consequence of photoelectric conversion efficiency (PCE) is CoWCoNC (6.68 %)>SiWSiNC (6.56 %)>GeWGeNC (6.49 %)>BWBNC (6.45 %)>PWPNC (6.20 %)>WNC (6.05 %). With the increase in electronegativity of the dopants, the photovoltaic performance decreases in a reverse order. This work provides a shortcut to the rational design of highly efficient and cost-effective catalysts for DSSCs.  相似文献   

14.
A series of large scale MxCo3?xO4 (M=Co, Ni, Zn) nanoarray catalysts have been cost‐effectively integrated onto large commercial cordierite monolithic substrates to greatly enhance the catalyst utilization efficiency. The monolithically integrated spinel nanoarrays exhibit tunable catalytic performance (as revealed by spectroscopy characterization and parallel first‐principles calculations) toward low‐temperature CO and CH4 oxidation by selective cation occupancy and concentration, which lead to controlled adsorption–desorption behavior and surface defect population. This provides a feasible approach for scalable fabrication and rational manipulation of metal oxide nanoarray catalysts applicable at low temperatures for various catalytic reactions.  相似文献   

15.
16.
Two novel series of monodisperse multi‐triarylamine‐substituted oligothiophenes, G 2 ‐ OT ( n )‐ G 2 with thiophene unit (n) varying from 6 to 8, and 4,7‐bis(2′‐oligothienyl)‐2,1,3‐benzothiadiazoles G 2 ‐ OT ( n ) BTD ‐ G 2 (n = 2, 4, 6) have been synthesized by the Suzuki coupling reactions. With an elongation of alkyl‐substituted oligothiophene core or an incorporation of benzothiadiazole into the central core, the absorption and emission spectra of G 2 ‐ OT ( n )‐ G 2 and G 2 ‐ OT ( n ) BTD ‐ G 2 series red‐shift substantially with the optical gap reducing to 1.95 eV for G 2 ‐ OT ( 6 ) BTD ‐ G 2 . Alkyl‐substitution onto oligothiophene backbone not only improves the solubility of the highly extended dendrimers but also renders coplanarity of the dendritic oligothiophene backbone at the excited state, which results in the enhancement of fluorescence quantum efficiency. The bulk heterojunction solar cells using these newly synthesized dendritic oligothiophenes as a donor material and [6,6]‐phenyl C61‐butyric acid methyl ester (PCBM) as an acceptor material were fabricated and investigated which showed an increase in device performance as compared with those of the lower homologues. On increasing the loading of PCBM from 1.5 to 3 times in the active layer, there was also an enhancement in device performance with power conversion efficiencies of as‐fabricated solar cells increasing from 0.18% to 0.32%. In addition, proper annealing procedure could significantly improve the device performance of the dendrimer‐based photovoltaic cell. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 137–148, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号