首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Multicycle Differential Scanning Calorimetry (MCDSC) is a procedure where repeated temperature cycles are executed and the measured data are superimposed for a selected number of cycles. Temperature cycles with a single sample are executed under selected experimental conditions in one of these procedures, namely, the MCDSCs. The second one, MCDSCm is a procedure in which every identical temperature cycle starts with a new sample of the same substance of a similar mass. The procedure MCDSCs using the same sample for a number of cycles is only applicable for substances and materials which are chemically and physically stable under the selected experimental conditions. The application of MCDSC enhances two extremely important qualities of a DSC measurement, namely, the sensitivity and the statistical base, both qualities with respect to the final data elucidated. Another possibility by MCDSC also related to the enhanced sensitivity can lead the discovery of a phenomenon which hitherto has not been observed. The most important result of any MCDSC application is the determination of the mean DSC curve within the temperature interval of interest by superimposing the single curves point by point and by the division of the calorimetric values obtained with the number of scans evaluated. The signal-to-noise-ratio (SNR) for the mean curve can be compared with the value determined for one or even for all the single curves measured yielding the improvement factor achieved with a MCDSC measurement. This experimentally determined improvement of the SNR can be compared with the value given on a statistical consideration by Gauss as the square root of the number of cycles evaluated. The main aims of this article are to prove the practical application of the procedure and the efficiency in case of rather small sample masses. Substances were selected with known enthalpy transitions and, in addition, polystyrene was taken for a determination of the data for the glass transition by MCDSC. Rather small sample masses in the order of micrograms as well as the experimental conditions have been selected for the measurements with 4,4′-azoxyanisole and n-hexatriacontane with the expectation to get a value of SNR for the single curves of about unity or even below. Two aims should be achieved with these experiments. First, the multicycle procedures and the data evaluation developed should be capable of establishing, after performing of a certain number of cycles, a mean curve showing an improvement over the SNR with respect to the single curves. Second, we should be able to get a rough estimation of the lower limit of the SNR for a single curve, below the instrumental noise level of the DSC used, necessary to achieve with a MCDSC experiment a mean curve with a clearly visible peak.  相似文献   

2.
Modulated differential scanning calorimetry   总被引:1,自引:0,他引:1  
The Modulated Differential Calorimetry (MDSC) is applied to the determination of the reversibility in the cholesteryl chloride, which presents a cholesteric monotropic phase between the isotropic and crystalline states. The experimental modulation parameters that govern this method i.e. frequency, amplitude and heating/cooling rate, are determined. MDSC curves and complementary thermomicroscopical observations assign melting, crystallization and liquid cholesteric transition as non reversing, and clarification as reversing.  相似文献   

3.
Modulated-temperature differential scanning calorimetry was used to measure the glass transition temperature,T g, the heat capacity relaxation in the glassy state and the increment of heat capacity, Cp, in the glass transition region for several polymers. The differential of heat capacity with respect to temperature was used to analyseT g and Cp simply and accurately. These measurements are not affected by complex thermal histories.  相似文献   

4.
Modulated differential scanning calorimetry   总被引:4,自引:0,他引:4  
Modulated DSCTM (MDSC) is a new, patent-pending extension to conventional DSC which provides information about the reversing and nonreversing characteristics of thermal events, as well as the ability to directly measure heat capacity. This additional information aids interpretation and allows unique insights into the structure and behaviour of materials., A number of examples of its use are described.  相似文献   

5.
Modulated temperature differential scanning calorimetry (MTDSC) is used to study simultaneously the evolution of heat flow and heat capacity for the isothermal and non-isothermal cure of an epoxy-anhydride thermosetting system. Modelling of the (heat flow related) chemical kinetics and the (heat capacity related) mobility factor contributes to a quantitative construction of Temperature-Time-Transformation (TTT) and Continuous-Heating-Transformation (CHT) diagrams for the thermosetting system.  相似文献   

6.
A recently described method is used to characterise thermal gradients in a DSC-2 and the results are compared with a conventional temperature calibration. Under certain circumstances the latter may be in error by several degrees with consequent adverse effects on calculated heat capacities. The errors are removed when allowance is made for variations in thermal lag from sample to sample.  相似文献   

7.
The presence of graphite is demonstrated to reduce the influence of thermal emissivity on the evaluation of heat changes for reactions of the type: Asolid Bsolid + Cgas by differential scanning calorimetry.Work supported, by the Italian Consiglio Nazionale delle Ricerche (C.N.R.).  相似文献   

8.
The quantitative performance of differential scanning calorimeters is reviewed. Temperature calibration is discussed in terms of an isothermal correction plus a contribution from thermal lag, this can be derived from individual curves and is valid in both, heating and cooling. It is emphasised that baselines that are drawn to thermal events, such as melting and transition phenomena, must have thermodynamic significance and a general procedure is suggested. When this is used, a power compensation calorimeter calibrated for heat-capacity work can reproduce heats of fusion and transition for a diverse range of materials to better than 1%.  相似文献   

9.
A combined static and dynamic temperature calibration is described. The static calibration corrects the instrumental dial temperature reading. The dynamic calibration has instrumental and material components and therefore varies from specimen to specimen. It is obtained from individual DSC curves and so removes uncertainties in sample temperature due to varying mass, geometry, and heating rate. The instrumental performance is improved and specific heats may be obtained to an accuracy of ±1%.  相似文献   

10.
A review of the literature on the DSC method for purity determination is presented, with a discussion of the most important aspects, i.e. theory, sample handling, calibration of the instrument, evaluation of melting curves, and the conditions and accuracy of the measurement of eutectic impurities.  相似文献   

11.
The use of DSC to evaluate the quality of drugs is demonstrated via some typical problems: purity determination of nicotinamide, granulation of calcium D-(+)-pantothenate, drying of menadione sodium bisulfite, stability ofα-hydroxyvitamin D on storage, and purification of calcium homo-pantothenate, pyridoxal-5′-phosphate and pyridoxal-hydrochloride.  相似文献   

12.
The amylose-lipid complex shows an endothermic transition around 100 °C in excess water. Complexes were prepared by adding lipids to an amylose-solution, and the precipitated complex was studied in the DSC during a heating and cooling sequence. The thermal stability of the complex depends on the lipid part, and the reversibility during cooling depends on presence of excess lipids.The influence of lipids on the gelatinization of starch was studied by adding lipids to wheat and potato starch, respectively, before the DSC-analysis. Depending on the lipid, an earlier as well as a delayed gelatinisation could be obtained.  相似文献   

13.
A method has been developed to determine polymer crystallization parameters with longer half times using differential scanning calorimetry. This method can be used irrespective of the crystallization temperature, sample weight, nature of the polymer and the sensitivity of the instrument. The results obtained from this method for polyethylene samples are compared with those obtained from dilatometry. Similar values for the kinetic parameters are obtained using both techniques. The calorimetric method has been used for other polymers such as polypropylene and poly(4-methyl-1-pentene).  相似文献   

14.
Thermal polymerization of acrylamide was studied by differential scanning calorimetry. Latent heat of fusion ΔHf and enthalpy of polymerization ΔHp values were found to be 36 and ?18.0 kcal mol?1, respectively. The overall activation energy E for the polymerization was calculated to be 19 k cal mol?1 up to 60% conversion. The added free-radical inhibitor (benzoquinone) was found to desensitize the thermal polymerization of acrylamide suggesting the polymerization to be a free-radical type. The existing rate equation for the heterogeneous bulk polymerization in the presence of initiators has been modified for the thermally initiated bulk polymerization of acrylamide. The experimental overall E value was found to agree well with the calculated E value when considering only the propagation and termination steps, thereby suggesting the process to be similar to postpolymerization of acrylamide.  相似文献   

15.
Method of high-sensitivity modulation differential scanning calorimetry was applied for investigation of the kinetically controlled irreversible thermal denaturation of the trypsin inhibitor from soybeans (Kunitz inhibitor, KI) in diluted solution. The measurements were carried out with a temperature-modulation capillary nanocalorimeter designed and produced by the Institute of Biological Instrumentation of the RAS (Pushchino, Russia). An algorithm of the experimental data processing and corresponding software were developed. It was shown that the modulation nanocalorimetry allows one to obtain in one experiment the temperature dependence of the rate constant for irreversible protein denaturation. The temperature dependence of the rate constant and the activation energy of the irreversible denaturation of Kunitz inhibitor were determined. The obtained value of the activation energy (E a = 206 ± 6 kJ mol?1) agrees with independent estimates of this kinetic parameter.  相似文献   

16.
A procedure is described to determine the limit of detection of DSC instruments by using tiny signals from spontaneous polymorphic transitions of CsCl, K2Cr2O7 and Na2SO4. It is shown how such signals can be found well-resolved in DSC diagrams of powder samples. To distinguish them from the baseline noise they should exhibit a height at least twice that of the baseline width. For the instrument employed the corresponding smallest amount of heat, i.e., the limit of detection, was found to be 0.1 mJ.The authors thank Mr. H. Maltry for technical help and the Deutsche Forschungsgemeinschaft for support.  相似文献   

17.
A technique of measurement of thermal conductivity of solid materials by differential scanning calorimetry is presented. It concerns small samples having a diameter less than 8.0 mm, a height less than 2.0 mm and a low thermal conductivity. This method requires many samples with different heights which are heated in such a way that a calibration substance put on their top undergoes a first-order phase transition. The analysis of heat transfer of a such experiment predicts that the slope of the differential power during the transition is proportional to the factor 2 and inversely proportional to the sum of the thermal resistances. A measurement of the thermal conductivity of samples made of polytetrafluoroethylene powder, compressed at the density of 2.10±0.03 g cm−3, has been performed; the value obtained is 0.33±0.02 W m−1 K−1. Measurements of thermal conductivity of small metal hydride pellets are also presented. The precision of the measurements are on average 10%.  相似文献   

18.
This article is a review of some results obtained by Differential Scanning Calorimetry (DSC) for characterizing the morphology of emulsions. In a classical DSC experiment, an emulsion sample is submitted to a regular cooling and heating cycle between temperatures that include freezing and melting of the dispersed droplets. By using the thermograms found in the literature for various emulsions, how to get information about the solidification and melting, the presence of solute, the emulsion type, the transfer of matter, the stability and the droplet size is shown.  相似文献   

19.
The origins of multiple peaks observed by differential scanning calorimetry have been examined in detail for a linear polyethylene fraction crystallized from dilute solution and for bulk-crystallized copolymers of ethylene. At least two major bases are demonstrated. One is melting–recrystallization; the other a consequence of the distribution of crystallite sizes. The melting–recrystallization process, however, often only yields one endothermic peak. This peak is therefore not characteristic of the original crystallites present. In these situations complementary methods need to be used to determine the melting temperature. We have complemented the calorimetric studies with measurement of the crystallite size distribution as determined from the Raman low frequency acoustical mode spectra. A major increase occurs cooperatively in the crystallite size distribution during the initial melting. Most importantly, we have also been able to make a direct comparison between the interfacial free energies of thin crystallites formed from dilute solution and from bulk-crystallized linear polyethylene.  相似文献   

20.
The melting and crystallization of a sharply melting standard has been explored for the calibration of temperature-modulated differential scanning calorimetry, TMDSC. Modulated temperature and heat flow have been followed during melting and crystallization of indium. It is observed that indium does not supercool as long as crystal nuclei remain in the sample when analyzing quasi-isothermally with a small modulation amplitude. For standard differential scanning calorimetry, DSC, the melting and crystallization temperatures of indium are sufficiently different not to permit its use for calibration on cooling, unless special analysis modes are applied. For TMDSC with an underlying heating rate of 0.2 K min–1 and a modulation amplitude of 0.5–1.5 K at periods of 30–90 s, the extrapolated onsets of melting and freezing were within 0.1 K of the known melting temperature of indium. Further work is needed to separate the effects originating from loss of steady state between sample and sensor on the one hand and from supercooling on the other.On leave from Toray Research Center, Inc., Otsu, Shiga 520, Japan.This work was supported by the Division of Materials Research, National Science Foundation, Polymers Program, Grant # DMR 90-00520 and the Division of Materials Sciences, Office of Basic Energy Sciences, U.S. Department of Energy at Oak Ridge National Laboratory, managed by Lockheed Martin Energy Research Corp. for the U.S. Department of Energy, under contract number DEACOS-960R22464. Support for instrumentation came from TA Instruments, Inc. and Mettler-Toledo Inc. Research support was also given by ICI Paints.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号