首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing importance of single-nucleotide polymorphisms (SNPs) in determination of disease susceptibility or in prediction of therapy response brings attention of many molecular diagnostic laboratories to simple and low-cost SNP genotyping methodologies. We have recently introduced a mutation detection technique based on analysis of homo- and heteroduplex PCR fragments resolved in cycling temperature gradient conditions on a conventional multicapillary-array DNA sequencer. The main advantage of this technique is in its simplicity with no requirement for sample cleanup prior to the analysis. In this report we present a practical application of the technology for genotyping of SNP markers in two separate clinical projects resulting in a combined set of 44 markers screened in over 500 patients. Initially, a design of PCR primers and conditions was performed for each SNP marker. Then, optimization of CE running conditions (limited just to the proper selection of temperature cycling) was performed on pools of 20 DNA samples to increase the probability of having each of the two allele types represented in the sample. After selecting the optimum conditions, screening of markers in patients was performed using a multiple-injection approach for further acceleration of the sample throughput. The rate of successful optimization of experimental conditions without any pre-selection based on the SNP sequence or melting characteristics was 80% from the initial SNP marker candidates. By studying the failed markers, we attempt to identify critical factors enabling successful typing. The presented technique is very useful for low to medium sized SNP genotyping projects mostly applied in pharmacogenomic research as well as in clinical diagnostics. The main advantages include low cost, simple setup and validation of SNP markers.  相似文献   

2.
An assessment of fractionated mouse hippocampal peptides was conducted. Protein extract from a single mouse hippocampus was enzymatically digested and fractionated by IEF. Aliquots of fractions were pooled into fewer, more complex samples. The unfractionated lysate, fractions, and pooled fractions were subjected to LC‐MS/MS analysis. Samples consisting of many individual fractions had more protein identifications, greater protein sequence coverage, and quantified proteins with more spectral counts than protein extract that was unfractionated or pooled into fewer LC‐MS/MS samples. Additionally, prefractionation reduced the median CV for spectral counts as much as 33%. However, the relative gain in proteome resolution was found to saturate with increasing fractionation extent. This study demonstrates how prefractionation by offline IEF can improve the resolution of proteomic investigations of the mouse hippocampus, and that a data‐driven pooling methodology can reduce excessive and cost‐ineffective fractionation.  相似文献   

3.
We present a newly developed software called "QSNPlite" that comprehensively interprets the data of SSCP and sequencing analyses obtained from capillary array electrophoresis systems used in the quantitative characterization of SNPs. QSNPlite assists in the genotyping of individuals with SNPs and in estimating the allele frequencies of SNPs using pooled DNA. We show that this estimation is accurate (mean absolute error, 1.4%) by comparing the results of the pooled analysis using QSNPlite with the true frequencies based on the allele counting after performing individual genotypings. The QSNPlite program runs on Windows XP and can be used to determine the allele frequencies of SNPs among a large number of individuals, such as in association studies of disease-responsible genes using the candidate gene approach.  相似文献   

4.
Rodríguez S  Chen XH  Day IN 《Electrophoresis》2004,25(7-8):975-979
Polymorphic dinucleotide repeat loci ('microsatellite markers') are found in varying abundance throughout the genomes of most organisms. They have been extensively used for genetic studies, but conventional techniques used for their genotyping require sophisticated equipment. Microplate array diagonal gel electrophoresis (MADGE) has previously been extended to economical high-throughput genotyping of trinucleotide and tetranucleotide microsatellite amplicons. However, the capability of this technique to resolve the alleles of dinucleotide repeat loci has not been explored previously. Here we show that a modified microsatellite-MADGE approach can provide sufficient resolution for dinucleotide repeat typing. This enables economical and convenient set up for analysis of single markers in many samples in parallel, suitable, for example, for population association studies.  相似文献   

5.
Genome-wide association studies, as a powerful approach for detecting common variants associated with diseases, have revealed many disease-associated loci. However, the traditional association analysis methods do not have enough power for detecting the effects of rare variants with limited sample size. As a solution to this problem, pooling rare variants by their functions into a composite variant provides an alternative way for identifying susceptible genes. In this paper, we propose a new pooling method to test the variant–disease association and to identify the functional rare variants related with the disease. Variants with smaller and larger risk measures defined as the ratio of allele frequencies between cases and controls are pooled and a chi-square test of the resultant pooled table is calculated. We vary the threshold of pooling over all possible values and use the maximal chi-square as test statistic. The maximal chi-square is in fact the global maximum over all possible poolings. Our approach is similar to the existing variable-threshold method, but we threshold on the risk measure instead of allele frequencies of controls. Simulation results show that our method performs better in both association testing and variant selection.  相似文献   

6.
The dysregulation of the dopaminergic system has been implicated in the pathophysiology of major psychosis, including schizophrenia, with dopamine receptor genes (DRDs) presently targeted as the most promising candidate genes. We investigated DRD1-5 for association with schizophrenia using a multi-stage approach in a Korean sample. One hundred forty-two SNPs in DRD1-5 were selected from the dbSNP, and the associations of each SNP were then screened and typed by MALDI-TOF mass spectrometry using pooled DNA samples from 150 patients with major psychosis and 150 controls. Each of the suggested SNPs was then genotyped and tested for an association within the individual samples comprising each pool. Finally, the positively associated SNPs were genotyped in an extended sample of 270 patients with schizophrenia and 350 controls. Among the 142 SNPs, 88 (62%) SNPs in our Korean population were polymorphic. At the pooling stage, 10 SNPs (DRD1: 2, DRD2: 3, and DRD4: 5) were identified (P<0.05). SNPs rs1799914 of DRD1 (P=0.046) and rs752306 of DRD4 (P=0.017) had significantly different allele frequencies in the individually genotyped samples comprising the pool. In the final stage, with the extended sample, the suggestive association of DRD4 with rs752306 was lost, but the association of DRD1 with rs1799914 gained greater significance (P=0.017). In these large-scale multi-stage analyses, we were able to find a possible association between DRD1 and schizophrenia. These findings suggested the potential contribution of a multi-step strategy for finding genes related to schizophrenia.  相似文献   

7.
In the post genomic era, the screening of many different genetic polymorphisms in large populations represents a major goal that will facilitate the understanding of individual genetic variability in the development of multi factor diseases and in drug response and toxicities. The increasing interest in these pathogenetic and pharmacogenomic studies by both academic and pharmaceutical industry researchers has increased the demand for broad genome association studies. This demand has produced a boom in the development of new and robust high throughput screening methods for genotype analysis. Matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents an emerging and powerful technique for DNA analysis because of its high speed, accuracy, no label requirement, and cost-effectiveness. So far, many MALDI-TOF MS approaches have been developed for rapid screening of single nucleotide polymorphisms (SNPs), variable sequences repeat, epigenotype analysis, quantitative allele studies, and for the discovery of new genetic polymorphisms. The more established methods are based on single base primer extension and minisequencing implemented with new chemical features to overcome the limitations associated with DNA analysis using MALDI-TOF MS. These new promising methods of genotyping include both photochemical and other different chemical and enzyme cleavage strategies that facilitate sample automation and MS analysis for both real-time genotyping and resequencing screening. In this review, we analyze and discuss in depth the advantages and the limitations of the more recent developments in MALDI-TOF MS analysis for large-scale genomic studies applications.  相似文献   

8.
The objective of this study was to develop a systematic and flexible method for assembling multiplex simple sequence repeat marker panels for high-throughput genome analysis in the tomato, Solanum lycopersicum, for varietal identification and to demonstrate the technical viability of these genetic markers for use in the enforcement of U.S. Department of Agriculture marketing order-based identity preservation programs. GeneMapper, a semiautomated software tool, was used for designing multiplex panels, allele identification, and polymorphism pattern evaluation of diverse tomato cultivars. Semiautomated genotyping was performed on a set of 12 microsatellite markers providing genome-wide coverage of the tomato chromosomes. Microsatellites were detected with fluorescently labeled primers grouped into five multiplex panels, and each primer pair was assessed in replicated trials for reliability of allele size estimates. Allele sizes for each locus were compared, and a database for 34 tomato varieties was developed. The microsatellite marker set identified distinct allelic peaks and unique genetic fingerprints for each of the studied tomato varieties. A "blind testing" exercise with UglyRipe and Vintage Ripe tomato varieties, using the above set of markers and database, further established the usefulness of these microsatellite markers for tomato commodity marketing order enforcement.  相似文献   

9.
Single nucleotide polymorphisms (SNPs) are currently being mapped and databased at a remarkable pace, providing a viable means for understanding disease susceptibility, differential drug response and human evolution. Consequently, there is an increasing demand for SNP genotyping technologies that are simple, rapid, cost effective and readily amenable to automation for high-throughput analyses. In this study, we improved the Survivor Assay, a SNP detection method based on electrospray ionization mass spectrometry (ESI-MS), with several developments. One improvement is the development of a one-well assay, requiring no off-line purification of the polymerase chain reaction product, achieved by simple addition of reagent solution into a single well. Another is the on-line separation of magnesium and dideoxynucleotides using an in-house made monolithic metal chelating column, eliminating any off-line sample preparation prior to mass spectrometric analysis. Here the Survivor Assay is extended from a proof-of-principle concept to a validated method by genotyping six SNPs from five different regions of human genomic DNA in 55 individual samples with 100% accuracy. This improved Survivor Assay eliminates the tedious and time-consuming steps of sample preparation, minimizes sample handing and offers a high-throughput analysis of SNPs by ESI-MS. The current combined preparation and analysis time is 2 min per sample. The simplicity of this method has potential for full automation and parallel chromatography and, thus, reduced analysis time. In addition, we have adapted the Survivor Assay for quantitative SNP analysis in pooled DNA samples. The capabilities and sensitivity of this approach were evaluated. We demonstrate that an allele occurring at a frequency of 2% can consistently be quantitated.  相似文献   

10.
The capillary electrophoresis (CE) technology is commonly used for fragment length separation of markers in forensic DNA analysis. In this study, pyrosequencing technology was used as an alternative and rapid tool for the analysis of biallelic InDel (insertion/deletion) markers for individual identification. The DNA typing is based on a subset of the InDel markers that are included in the Investigator® DIPplex Kit, which are sequenced in a multiplex pyrosequencing analysis. To facilitate the analysis of degraded DNA, the polymerase chain reaction (PCR) fragments were kept short in the primer design. Samples from individuals of Swedish origin were genotyped using the pyrosequencing strategy and analysis of the Investigator® DIPplex markers with CE. A comparison between the pyrosequencing and CE data revealed concordant results demonstrating a robust and correct genotyping by pyrosequencing. Using optimal marker combination and a directed dispensation strategy, five markers could be multiplexed and analyzed simultaneously. In this proof‐of‐principle study, we demonstrate that multiplex InDel pyrosequencing analysis is possible. However, further studies on degraded samples, lower DNA quantities, and mixtures will be required to fully optimize InDel analysis by pyrosequencing for forensic applications. Overall, although CE analysis is implemented in most forensic laboratories, multiplex InDel pyrosequencing offers a cost‐effective alternative for some applications.  相似文献   

11.
For well-studied plant species with whole genome sequence or extensive EST data, SNP markers are the logical choice for both genotyping and whole genome association studies. However, SNP markers may not address the needs of researchers working on specialty crops with limited available genomic information. Microsatellite markers have been frequently employed due to their robustness, but marker development can be difficult and may result in few polymorphic markers. SSCP markers, such as microsatellites, are PCR-based and scored by electrophoretic mobility but, because they are based on SNPs rather than length differences, occur more frequently and are easier to develop than microsatellites. We have examined how well correlated the estimation of genetic diversity and genetic distance are in a population or germplasm collection when measured by 13 highly polymorphic microsatellite markers or 20 SSCP markers. We observed a significant correlation in pairwise genetic distances of 82 individuals in an international cacao germplasm collection (Mantel test Rxy=0.59, p<0.0001 for 10 000 permutations). Both sets of markers could distinguish each individual in the population. These data provide strong support for the use of SSCP markers in the genotyping of plant species where development of microsatellites would be difficult or expensive.  相似文献   

12.
The efficiency of the genotyping process is determined by many simultaneous factors. In actual genotyping, a production run is often preceded by small-scale experiments to find optimal conditions. We propose to use statistical analysis of production run data as well, to gain insight into factors important for the outcome of genotyping. As an example, we show that analysis of variance (ANOVA) applied to the first-pass results of a genetic study reveals important determinants of genotyping success. The largest factor limiting genotyping appeared to be interindividual variation among DNA samples, explaining 20% of the variance, and a smaller reaction volume, sizing failure, and differences among markers all explained ∼10%. Other potentially important factors, such as sample position within the plate and reusing electrophoresis matrix, appeared to be of minor influence. About 55% of the total variance could be explained by systematic factors. These results show that ANOVA can provide valuable feedback to improve genotyping efficiency. We propose to adjust genotype production runs using principles of experimental design in order to maximize genotyping efficiency at little additional cost.  相似文献   

13.
Lee SW  Kim IJ  Jeong BY  Choi MH  Kim JY  Kwon KH  Lee JW  Yu A  Shin MG 《Electrophoresis》2012,33(12):1863-1872
The response criteria for complete remission (CR) in acute myeloid leukemia (AML) are currently based on morphology and blood cell counts. However, these criteria are insufficient to establish a diagnosis in cases with poor quality bone marrow (BM) samples demonstrating a loss of cellular morphology. We investigated whether the sera of patients contained biomarkers that indicate disease response status. First, we performed multidimensional liquid chromatography-differential gel electrophoresis (MDLC-DIGE) to generate protein profiles of two pooled, paired serum samples from patients who had achieved CR; one collected at diagnosis (PreCR) and the other collected after chemotherapy (CR). Then, with the biomarker candidates found, ELISA was carried out for individual PreCR and CR samples, and for other verification sets including nonremission (NR) patients and normal samples. We selected two proteins, complement factor H (CFH) and apolipoprotein H (ApoH), with dye (Cy) ratios showing greater than 2.0-fold differences between the pooled samples. ELISA showed that CFH and ApoH are useful for distinguishing between the recovered (CR and normal) and nonrecovered (PreCR, PreNR, and NR) states in AML (p <0.001). We successfully applied a protein profiling technology of MDLC-DIGE and LC-MS/MS to discover two biomarkers for CR which needs further validation for a clinical setting.  相似文献   

14.
In this study, we performed high-throughput and precise single nucleotide polymorphism (SNP) typing by fluorescent capillary electrophoresis single-strand conformation polymorphism (CE-SSCP) analysis. A system composed of a multicapillary DNA analyzer, a newly developed sieving matrix, four different colors of fluorescent labels, and a multiplex polymerase chain reaction (PCR) enabled low-cost and highly reliable SNP typing. Moreover, this system enabled the estimation of SNP allele frequencies using pooled DNA samples, which should be beneficial for large-scale association studies. Thus, fluorescent CE-SSCP analysis is a useful method for large-scale SNP typing.  相似文献   

15.
Extensive collections of formalin-fixed paraffin-embedded (FFPE) tissues exist that could be exploited for genetic analyses in order to provide important insights into the genetic basis of disease or host/pathogen cointeractions. We report here an evaluation of a 44 SNP multiplex genotyping method, multiplex PCR with minisequencing (MPMS), on 92 DNA extractions performed on six archival FFPE samples of variable DNA quality, which date between 9 and 25 years old. On the three extracts with highest quality, we found the assay efficiency to be near 100%. However, the efficiency of the lowest quality extracts varied significantly. In this study, we demonstrate that although direct measures of DNA concentration in the extracts provide no useful information with regard to subsequent MPMS success, the success of the assay can be determined to some degree a priori, through initial screening of the DNA quality using a simple quantitative real-time PCR (qPCR) assay for nuclear DNA, and/or an assay of the maximum PCR amplifiable size of nuclear DNA. MPMS promises to be of significant use in future genetic studies on FFPE material. It provides a streamlined approach for retrieving a large amount of genetic information using simple, single reactions and minute amounts of archival tissue/DNA. In the light of this evidence, we suggest that the systematic screening of FFPE collections may in the future provide valuable insights into the past.  相似文献   

16.
Analysis of the mitochondrial DNA variation in populations is commonly carried out in many fields of biomedical research. We propose the analysis of mitochondrial DNA coding region SNP (mtSNP) variation to a high level of phylogenetic resolution based on MALDI‐TOF MS. The African phylogeny has been chosen to test the applicability of the technique but any other part of the worldwide phylogeny (or any other mtSNP panel) could be equally suitable for MALDI‐TOF MS genotyping. SNP selection thus aimed to fully cover all the mtSNPs defining major and minor branches of the known African tree, including, macro‐haplogroup L, and haplogroups M1, and U6. A total of 230 mtSNPs were finally selected. We used tests samples collected from two different African locations, namely, Mozambique and Chad Basin. Different internal genotyping controls and other indirect approaches (e.g. phylogenetic checking coupled with automatic sequencing) were used in order to evaluate the reproducibility of the technique, which resulted to be 100% using samples previously subjected to whole genome amplification. The advantages of the MALDI‐TOF MS are also discussed in comparison with other popular methods such as minisequencing, highlighting its high‐throughput nature, which is particularly suitable for case–control medical studies, forensic databasing or population and anthropological studies.  相似文献   

17.
Lou C  Cong B  Li S  Fu L  Zhang X  Feng T  Su S  Ma C  Yu F  Ye J  Pei L 《Electrophoresis》2011,32(3-4):368-378
Single nucleotide polymorphisms (SNPs), which have relatively low mutation rates and can be genotyped after PCR with shorter amplicons compared with short tandem repeats (STRs), are being considered as potentially useful markers in forensic DNA analysis. Those SNPs with high heterozygosity and low Fst (F-statistics) in human populations are described as individual identification SNPs, which perform the same function as STRs used in forensic routine work. In the present study, we developed a multiplex typing method for analyzing 44 selected individual identification SNPs simultaneously by using multiplex PCR reaction in association with fluorescent labeled single base extension (SBE) technique. PCR primers were designed and the lengths of the amplicons ranged from 69 to 125?bp. The population genetics data of 79 unrelated Chinese individuals for the 44 SNP loci were investigated and a series of experiments were performed to validate the characteristic of the SNP multiplex typing assay, such as sensitivity, species specificity and the performance in paternity testing and analysis of highly degraded samples. The results showed that the 44-SNPs multiplex typing assay could be applied in forensic routine work and provide supplementary data when STRs analysis was partial or failed.  相似文献   

18.
Sex determination of anonymous samples is a requirement before analysis of DNA variation on X or Y chromosomes. Based on this, we designed a method for screening samples on different DNA capillary sequencing instruments with a sensitivity that is able to quantify sex chromosome abnormalities. The two different amelogenin alleles sited on the X and Y chromosomes were polymerase chain reaction amplified with the same set of primers and separated by denaturant capillary electrophoresis (DCE). Sex chromosome ratios could be reproducibly determined with a relative standard deviation of 8.7%, which is sufficient to distinguish a normal XY karyotype from an XYY karyotype associated with Klinefelter syndrome. Reconstruction experiments demonstrated sensitivity down to a simulated Y:X allelic ratio of 1:127 in all three instruments, enabling the prediction of sex chromosomal aneuploidies. When tested on anonymous pooled and single samples, DCE gave a good prediction of the male to female ratio in pools of 1000 blood donors. In conclusion, DCE is a simple and robust method for sex determination that can be readily performed on commercially available CE systems.  相似文献   

19.
Important developments in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) technique have generated new perspectives regarding SNP genotyping, which are particularly promising for ancient population-based studies. The main aim of the present study was to investigate the application of a MALDI-TOF MS-based SNP genotyping technique, called iPLEX(?) Gold, to analyze Amerindian ancient DNA samples. The first objective was to test the sensitivity of the method, which is recommended for DNA quantities between 10 and 5?ng, for ancient biological samples containing DNA molecules that were degraded and present in minute quantities. The second objective was to detail the advantages of this technique for studies on ancient populations. Two multiplexes were designed, allowing the major Amerindian mitochondrial and Y haplogroups to be determined simultaneously. This analysis has never been described before. Results demonstrated the reliability and accuracy of the method; data were obtained for both mitochondrial and nuclear DNA using picogram (pg) quantities of nucleic acid. This technique has the advantages of both MS and minisequencing techniques; thus, it should be included in the protocols for future ancient DNA studies.  相似文献   

20.
An electrochemical DNA chip was constructed for simultaneous genotyping of single nucleotide polymorphisms (SNPs) using genomic DNA extracted from blood samples. This chip consisted of electrodes located on a single piece of substrate and allele-specific oligonucleotide probes on the electrodes. As a first application, the 4 SNPs (MxA[-88], MxA[-123], MBL[X/Y], and MBL[A/B]), which have association with the efficacy of interferon therapy for HCV patient, were genotyped on the new DNA chip. Following hybridization of PCR products containing the 4 types of fragments, washing, bisbenzimide H33258 (Hoechst 33258) reaction and electrochemical analyses, 59 blood samples were genotyped by the chip method simultaneously. All procedures were completed within 2 h and the results were 100% concordant with those by the direct sequence method. The electrochemical DNA chip is expected to be a practical tool for SNPs genotyping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号