首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New zinc (II), copper (II), nickel (II) and cobalt (III) complexes, [Zn (HL)2]I2 (1) , [Cu (HL)Cl2] (2) , [Cu (HL)Br2] (3) , [Cu (HL)(H2O)2](ClO4)2 (4) , [Ni (HL)2]I2·H2O (5) , [Co(L)2]Cl (6) , [Co(L)2]NO3 (7) , [Co(L)2]I·[Co(L)2](I3) (8) were obtained with 2-formylpyridine 4-allyl-S-methylisothiosemicarbazone ( HL ). The isothiosemicarbazone ligand was characterized by NMR (1H and 13C), IR spectroscopy and X-ray diffraction. All the complexes were characterized by elemental analysis, IR, UV–Vis, ESI-MS spectroscopy, molar conductivity, magnetic susceptibility measurements. X-ray diffraction analysis on the monocrystal and powder elucidated the structure of the complexes 1 , 5 , 7 and 8 . The ligand and the complexes were tested for their antioxidant and antimicrobial activity against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae and Candida albicans. Also, the antiproliferative properties of these compounds on human leukemia HL-60, human cervical epithelial HeLa, human epithelial pancreatic adenocarcinoma BxPC-3, human muscle rhabdomyosarcoma spindle, large multinucleated RD cells and normal MDCK cells have been investigated. The nickel complex 5 and cobalt complexes 6 , 7 showed promising antiproliferative activity and low toxicity.  相似文献   

2.
Mn(II), Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) complexes of multifunctional triaminoxime have been synthesized and characterized by elemental analyses, IR, UV–Vis spectra, magnetic moments, 1H- and 13C-NMR spectra for ligand and its Ni(II) complex, mass spectra, molar conductances, thermal analyses (DTA, DTG and TG) and ESR measurements. The IR spectral data show that the ligand is bi-basic or tri-basic tetradentate towards the metals. Molar conductances in DMF indicate that the complexes are non-electrolytes. The ESR spectra of solid copper(II) complexes [(HL)(Cu)2(Cl)2] · 2H2O (2) and [(L)(Cu)3(OH)3(H2O)6] · 7H2O (6) show axial symmetry of a d x²???y 2 ground state; however, [(HL)(Co)] (4) shows an axial type with d Z 2 ground state and manganese(II) complex [(L)(Mn)3(OH)3(H2O)6] · 4H2O (10) shows an isotropic type. The biological activity of the ligand and its metal complexes are discussed.  相似文献   

3.
Four Co(II) complexes, [Co(HL)2](OAc)2, [Co(HL)2Cl2], [Co(HL)2(MeOH)2](NO3)2, and [Co2(HL)4(SO4)2] (HL = acetone-N(4)-phenylsemicarbazone) were synthesized and characterized by physicochemical and spectroscopic methods. The magnetic susceptibility measurements indicate that the complexes are paramagnetic with three unpaired electrons. In all the complexes, the semicarbazone is coordinated as a neutral bidentate ligand. The structure of [Co(HL)2(MeOH)2](NO3)2 was confirmed by single crystal X-ray crystallography. The ligand is neutral and bidentate, being coordinated to the cobalt atom through the carbonyl oxygen and the azomethine nitrogen. Intermolecular hydrogen bonding and C–H···π interactions combine to stabilize the crystal structure. The ligand and its two complexes [Co(HL)2Cl2] and [Co(HL)2(MeOH)2](NO3)2 were screened for their antibacterial and antifungal activities using disk diffusion methods.  相似文献   

4.
Two cobalt(II) complexes based on 4,6-bis(2-pyridyl)-1,3,5-triazin-2-ol (HOBPT), [Co3(OBPT)(μ3?OH)(SO4)2(H2O)3]·2H2O (1) and [Co(OBPT)2]·2H2O (2) were obtained. Single-crystal X-ray diffraction analyses indicate that 1 is a two-dimensional (2D) structure and the ligand adopts mono/bis-bidentate coordination; this coordination mode of this ligand was never found before. Magnetic properties of 1 have been studied, showing that 1 is a spin canted belt. Much different from 1, 2 is a discrete structure with tridentate ligand with its hydroxyl group deprotonated but uncoordinated. Lattice water molecules in 2 link to four-membered water clusters, which linked the [Co(OBPT)2] to 1-D chains along the b axis.  相似文献   

5.
Five cobalt(II) complexes based on 1H-indazole-3-carboxylic acid (H2L), [Co(phen)(HL)2]·2H2O (1), [Co(5,5′-dimethyl-2,2′-bipy)(HL)2] (2), [Co(2,2′-bipy)2(HL)2]·5H2O (3), [Co2(2,9-dimethyl-1,10-phen)2(L)2] (4) and [Co2(6,6′-dimethyl-2,2′-bipy)2(L)2]·H2O (5) (2,2'-bipy = 2,2′-bipyridine, phen = 1,10-phenanthroline), have been synthesized and structurally characterized by elemental analyses, IR and UV-vis spectroscopies and single-crystal X-ray crystallography. The results indicate that 1–3 possess mononuclear Co(II) structures, while 4 and 5 exhibit binuclear structure. 1D water tape which is linked by the multiple hydrogen bonds was embedded in the 3D motif of complex 3. Complexes 4 and 5 show two orthogonal planes of motif that was constituted by phen/2,2′-bipy and indazole acid, respectively. The intermolecular interactions including hydrogen bonding and π-π stacking interactions are stabilizing these complexes. The interactions of the synthesized complexes with calf-thymus DNA (CT-DNA) have been investigated by UV-vis absorption titration, ethidium bromide displacement assay and viscosity measurements. The results reveal that the complexes could interact with CT-DNA via a groove binding mode. Their behavior rationalization was further theoretically studied by molecular docking.  相似文献   

6.
Three new lanthanide(III) complexes with N-(2-propionic acid)-salicyloylhydrazone (H2L, C10H10N2O4) ligand [La(HL)2(NO3)(H2O)2]3 ·4H2O(I), [Gd(HL)3] · 2(C2H5)3 N(II) and [Er(L)(HL)(H2O)2] · 2H2O(III) has been synthesized and characterized by elemental analyses, IR, UV, and molar conductivity. The crystal structures of three complexes have been determined by X-ray single-crystal diffractometer. In complex I, the La3+ ion is ten-coordinated by two tridentate ligands, one bidentate nitrate, and two water molecules. In complex II, the Gd3+ ion has a coordination number of nine by three tridentate ligands. In complex III, the Er3+ ion is eight-coordinated by two tridentate ligands and two water molecules. In all structures, tridentate ligands are coordinated by carboxyl O and acyl O atoms and azomethine N atom to form two stable five-membered rings sharing one side in the keto mode as indicated by the results of crystal structures and infrared spectral analysis.  相似文献   

7.
New complexes of bivalent Co, Ni, and Cu with isatin aminoguanisone (HL) and nitroaminoguanisone (HL1) of the composition ([Co(HL)2]Cl2 (I), [Ni(HL)2]Cl2 (II), [Cu(L)Cl] (III), [Co(L1)2] (IV), [Ni(L1)2] (V), and [Cu(L1)2] (VI) are synthesized. Their molecular conductivities and effective magnetic moments are measured and thermal stabilities are studied. The type of the ligand coordination in IVI is proposed on the basis of IR data. The summary of physicochemical data for IVI and the energy calculations for their molecules by the molecular mechanics method made it possible to establish stoichiometry of the coordination polyhedra of the complexes.  相似文献   

8.
A novel vic-dioxime ligand with a thiourea moiety, (4E,5E)-1,3-bis{4-[(4-bromophenylamino)methylene]phenyl}-2-thiooxaimidazoline-4,5-dione dioxime (4) (bmdH2) has been synthesized from N,N′-bis{4-[(4-bromophenylamino)methylene]phenyl}thiourea and (E,E)-dichloroglyoxime. The bmdH2 ligand (4) forms transition metal complexes [M(bmdH)2] with a metal?:?ligand ratio of 1?:?2 with M?=?Ni(II), Co(II), and Cu(II). The mononuclear Ni(II), Co(II) and Cu(II) complexes, [Ni(bmdH)2] (5), [Co(bmdH)2] (6) and [Cu(bmdH)2] (7) have the metal ions coordinated through the two N,N atoms, as do most vic-dioximes. Elemental analyses, molar conductivity, magnetic susceptibility, IR, 1H NMR spectra, and UV-Visible spectroscopy were used to elucidate the structures of the ligand and its complexes. Conductivity measurements have shown that the mononuclear complexes are non-electrolytes. In addition, the ligands and metal complexes were screened for antibacterial and antifungal activities by agar well diffusion techniques using DMF as solvent.  相似文献   

9.
Reactions of copper(I) halides with triphenyl phosphine in acetonitrile followed by the addition of salicylaldehyde N-ethylthiosemicarbazone {(2-OH–C6H4)(H)C2=N3–N2H–C1(=S)N1HEt, H2stsc-NEt} in chloroform in 1?:?2?:?1 (Cl) or 1?:?1?:?1 (Br, I) molar ratios yield mononuclear, [CuCl(η 1-S-H2stsc-NHEt)(PPh3)2] (1) and sulfur-bridged dinuclear, [Cu2X2(μ-S-H2stsc-NEt)2(PPh3)2] (X?=?Br, 4; I, 5) complexes. Similarly, reaction of silver halides (Cl, Br) with H2stsc-NEt in acetonitrile followed by the addition of PPh3 to the solid that formed (1?:?1?:?2 molar ratio), yielding mononuclear complexes, [AgX(η 1-S-H2stsc-NHEt)(PPh3)2] (Cl, 2; Br, 3). All these complexes are characterized with analytical data, IR, and NMR spectroscopy and single-crystal X-ray crystallography. The ligand favored η 1-S bonding in 1, 2, and 3, and μ-S bonding in 4 and 5. Cu?···?Cu contacts were 3.063?Å. The complexes form 1-D or 2-D H-bonded networks, entrapping solvent in some cases.  相似文献   

10.
Wang  Cong  Wu  Yancong  Qu  Yao  Zhao  Kun  Xu  Jianhua  Xia  Xinzhao  Wu  Huilu 《Transition Metal Chemistry》2020,45(8):523-529

Three new metal complexes, namely: [Mn(AIDB)Cl2]·DMF (1), [Zn(AIDB)Br2]·CH3OH (2) and [Co(AIDB)Cl2]·CH3OH (3) having a ligand bis(benzimidazol-2-ylmethyl)allylamine (AIDB), have been synthesized in high yields and characterized by elemental analyses, molar conductivities, IR, UV–Vis spectra and single-crystal X-ray diffraction. The structural analysis revealed that all the three complexes 13 have five-coordinated trigonal bipyramid geometry where the degree of distorting is 1>3>2. In vitro antioxidant activity assay demonstrates that the complexes 1 and 3 display high scavenging activity against hydroxyl (OH·) and superoxide (O2−·) radicals.

  相似文献   

11.
A bidentate NO donor Schiff base, 2-(((2-chloro-5- (trifluoromethyl)phenyl)imino)methyl) phenol ( HL 1 ) and its complexes [Co(L1)2(H2O)2] ( 1 ), [Cu(L1)2] ( 2 ), [Mn(L1)2(H2O)2] ( 3 ), [Ni(L1)2(H2O)2] ( 4 ), [Pd2(L1)2(OAc)2·1.16H2O] ( 5 ), [Pt(L1)2] ( 6 ) were synthesized and characterized by different physico-chemical techniques including elemental and thermal analysis, magnetic susceptibility measurements, molar electric conductivity, IR, 1H-NMR, 13C-NMR, UV–Vis, mass spectroscopies and X-ray powder diffraction (XRD). The molecular structures of ligand HL 1 and two complexes ( 2 and 5 ) were confirmed by X-ray crystallography analysis on the monocrystal. In this complexes, the metal ions are in distorted square-planar environments. The copper (II) complex is mononuclear and crystallized in a monoclinic space group P21/c, whereas palladium (II) complex is dinuclear and crystallized in the trigonal crystal system R-3. The toxicity of the ligand and complexes was evaluated on both plant and animal cells, using the plant species Triticum aestivum L. and the crustacean Artemia franciscana Kellogg. At concentrations up to 100 μM the compounds presented very little toxicity on Artemia franciscana Kellogg. Moreover, the palladium (II) complex was devoid of any toxicity on the plant cells.  相似文献   

12.
13.
利用3-(2-吡啶基)-1,2,4-三唑配体(HL)和不同的金属盐设计合成了5个配合物[Co(HL)2(H2O)2](NO321)、[Cu2(L)2(NO32(H2O)4] (2)、[Cu2(L)2(AcO)2(H2O)2]·6H2O (3)、[Cu2(L)2(HL)2(ClO42]·2CH3CN (4)和[Cd2(L)2(HL)2(NO32]·2H2O (5),并通过X射线单晶衍射、红外、元素分析、X射线粉末衍射和热重对配合物结构进行了表征。测试结果表明配合物1具有单核结构,并且可以通过氢键的相互作用形成二维超分子结构。配合物2~5为双核结构。配合物25可以通过氢键的相互作用形成二维超分子结构。配合物3通过氢键的相互作用形成三维超分子结构。研究了配合物中HL配体的配位模式。此外,研究了配体HL和配合物15的固态荧光性质及荧光寿命。  相似文献   

14.
A new heterodonor chelating ligand, 2-{[bis(2-pyridylmethyl)amino]methyl}-4-(n-dodecyl)-6-methylphenol (HL2), has been synthesized and employed in the preparation of two amphiphilic heteroleptic mononuclear complexes, [FeIII(L2)(Br)2] (1) and [FeIII(L2)(SCN)2] (2). Compound 1 was obtained by reaction of HL2 with FeBr3 in EtOH. In situ reaction of Fe(L2)Br2 (1) with KSCN in EtOH or refluxing pure crystalline 1 with excess KSCN in EtOH/CH2Cl2 afforded 2. The complexes were characterized by elemental analysis, infrared spectroscopy, and X-ray single-crystal structural determination. Magnetic studies carried out exclusively on 2 to check for spin crossover suggest that the compound has a ground spin state of 5/2 and maintains high spin throughout the temperature range studied.  相似文献   

15.
The ligand N-(2-propionic acid)-salicyloyl hydrazone(H3L, 1) and its new transition metal(II) complexes [NiHL(bipy)H2O] (2), [CdHL(bipy)(H2O)2]2·2H2O (3) and [NiHL(phen)H2O]·H2O (4) (HL is a dianion, bipy?=?2,2′-bipyridine and phen?=?1,10-phenanthroline) were synthesized and characterized on the basis of elemental analyses, IR, 1H NMR, molar conductivity and thermal analysis. Single crystal X-ray diffraction showed that 1 is in keto form and connected by hydrogen bonds to form a two-dimensional supermolecular compound. Complexes 2 and 4 have the same structure with distorted meridional octahedral geometry with 1 as a tridentate ligand with keto-form coordination by azomethine, carboxyl O and acyl O. In 3, ligand 1 bridges two Cd(II) atoms by μ 2-O of carboxyl. H-bonding is an important weak interaction for constructing supermolecular frameworks. There are π–π interactions between bipy or phen rings in 3 or 4, respectively.  相似文献   

16.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

17.
The monomer 3‐allyl‐5‐(phenylazo)‐2‐thioxothiazolidine‐4‐one (HL) was prepared by the reaction of allyl rhodanine with aniline through diazo‐coupling reaction. Reaction of HL with Ni(II) or Co(II) salts gave polymer complexes ( 1 – 8 ) with general stoichiometries [M(HL)(Cl)2(OH2)2]n, [M(HL)(O2SO2)(OH2)2]n, [M(L)(O2NO)(H2O)2]n and [M(L)(O2CCH3)(H2O)2]n (where M = Ni(II) or Co(II)). The structures of the polymer complexes were identified using elemental analysis, infrared and electronic spectra, molar conductance, magnetic susceptibility, X‐ray diffraction and thermogravimetric analysis. The interaction between the polymer complexes and calf thymus DNA showed a hypochromism effect. HL and its polymer complexes were tested against bacterial and fungal species. Co(II) polymer complex 2 is the most effective against Klebsiella pneumoniae and is more active than penicillin. The results showed that Ni(II) polymer complex 5 is a good antibacterial agent against Staphylococcus aureus and Pseudomonas aeruginosa. Molecular docking was used to predict the binding between the monomer with the receptors of prostate cancer (PDB code: 2Q7L Hormone) and breast cancer (PDB code: 1JNX Gene regulation). Coats–Redfern and Horowitz–Metzger methods were applied for calculating the thermodynamic parameters of HL and its polymer complexes. The thermal activation energy of decomposition for HL is higher than that for the polymer complexes.  相似文献   

18.
The synthesis of a potentially bioactive mixed-valence CoIII/CoII complex with 2-acetylpyridine S-methylisothiosemicarbazone (HL) ligand is described. The crystal and molecular structure of the formed [CoIIIL2][CoIICl3 py]·Me2CO (I) compound (py stands for pyridine) is determined by single-crystal X-ray crystallography. It’s thermal decomposition along with the decomposition of the ligand and six structurally related complexes with formulas [CoL2]NO3·MeOH (1), [CoL2]Br·MeOH (2), [CoL2]HSO4·MeOH (3), [CoL2]2[CoII(NCS)4] (4), [Co(HL)(L)]I2·2MeOH (5), and [Co(HL)(L)][CoIICl4]·MeOH (6) was determined by simultaneous TG/DSC measurements. The decomposition pattern is evaluated using TG/DTA-MS data. The results were related to the solvent/moisture content and the decomposition mechanism of the compounds. The antimicrobial activity of the ligand and of all the complexes was tested in vitro for selected gram-negative and gram-positive bacteria and fungi. The activity of the ligand against all tested bacteria is comparable with those obtained for standard antibiotics, while it is less active against fungi. Surprisingly, the activity of the complexes is very low. The low antimicrobial activity of the complexes may be in connection with their high thermodynamic and kinetic inertness in solution. The results are also supported by the relatively high thermal stability of the complexes.  相似文献   

19.
Two two‐dimensional supramolecular Nickel(II) and Cobalt(III) complexes, [Ni( L 2 )2]·2CH3OH ( 1 ) and [2Co( L 2 )2] ( 2 ) ( HL 2  = 1‐(2‐{[(E)‐3‐bromo‐5‐chloro‐2‐hydroxybenzylidene]amino}phenyl)ethanone oxime), were synthesized via complexation of salts acetate with HL 1 (2‐(3‐bromo‐5‐chloro‐2‐hydroxyphenyl)‐4‐methyl‐1,2‐dihydroquinazoline 3‐oxide, H is the deprotonatable hydrogen). During the reaction, the C–N bond in HL 1 is converted into the C=N–OH group in HL 2 . The spectroscopic data of both complexes were compared with the ligand HL 1 . HL 1 and both complexes were determined by single‐crystal X‐ray crystallography. The differently geometric features of the obtained complexes 1 and 2 are observed. In the crystal structure, 1 and 2 form an infinite 1‐D chain‐like and 2‐D supramolecular frameworks. EPR spectroscopy of 2 was investigated. Moreover, electrochemical properties and antimicrobial activities of both complexes were also studied. In addition, the calculated HOMO and LUMO energies show the character of HL 1 , complexes 1 and 2 . The electronic transitions and spectral features of HL 1 and both complexes were discussed by TD‐DFT calculations.  相似文献   

20.
《Journal of Coordination Chemistry》2012,65(16-18):2856-2874
Abstract

Nine new cobalt(II) compounds, trans-[Co(LPAQ)2(Py)2] (1), trans-[Co(LPAQ)2(3-MePy)2] (2), trans-[Co(LMeAQ)2(Py)2] (3), trans-[Co(LOMeAQ)2(Py)2] (4), trans-[Co(LOEtAQ)2(Py)2]·2(H2O) (5), trans-[Co(LCAQ)2(Py)2] (6), trans-[Co(LBAQ)2(Py)2] (7), cis-[Co(LBAQ)2(3-MePy)2] (8a) and trans-[Co(LBAQ)2(3-MePy)2]·2(3-MePy) (8b) (primary ligand: LXAQ?=?substituted 5-[(E)-2-(aryl)-1-diazenyl]quinolin-8-olate; secondary ligands: Py?=?pyridine, 3-MePy = 3-methylpyridine), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy. Magnetic measurements of the cobalt compounds were performed in solution by 1H NMR spectroscopy using the Evans’ method while their redox properties were studied by cyclic voltammetry. Single-crystal X-ray diffraction analysis of the compounds revealed their octahedral geometries and trans configuration, except for 8a, which has a cis configuration. Intermolecular noncovalent interactions were detected, π···π interactions in 5, C?–?H···π interactions in 2 and C?–?H···π edge-to-face (T-shaped) arrangements in 3, 4, 6, and 7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号