首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The kinetic isotope effect (KIE) method was applied to study the mechanism of elimination of bromine from erythro-a,b-dibromocinamic acid. The large 14C KIE for both a- and b-position of side chain of erythro-a,b-dibromocinamic acid proves that elimination of bromine leading to formation of (E)-cinnamic acid proceeds via E2 mechanism.  相似文献   

2.
The carbon-14 kinetic isotope effect for the decarbonylation of lactic acid[1-14C] in sulfuric acid has been measured in the temperature interval of 20–90°C. The experimental values of (k12C/k14C) are compared with the theoretical14C kinetic isotope effect calculated assuming that one carbon-oxygen stretching vibration is lost in the rate-determining step. The discrepancy between experimentally observed temperature dependence of the14C kinetic isotope effect and the theoretical one is explained by the possible side reactions which change the apparent degrees of decarbonylation and isotopic composition of CH3CHOHCOOH[1-14C] used in experiments aiming at the determination of carbon-14 kinetic isotope effect in the decarbonylation process itself.  相似文献   

3.
Carbon-13 intramolecular kinetic isotope effects in the decarbonylation of oxalic acid dihydrate of natural isotopic composition by SO3 and by fuming sulphuric acid at room temperature and decarbonylation of oxalic acid dihydrate by 100% H3PO4 in the temperature interval 80–150°C have been determined. The obtained isotopic and kinetic results have been compared with the earlier13C experimental and theoretical studies in other solvents.  相似文献   

4.
The13C kinetic isotope effect fractionation in the decarbonylation of lactic acid (LA) of natural isotopic composition by concentrated phosphpric acids (PA) and by 85% H3PO4 has been studied in the temperature interval of 60–150°C. The values of the13C(1) isotope effects in the decarbonylation of lactic acid in 100% H3PO4, in pyrophosphoric acid and in more concentrated phosphoric acids are intermediate between the values calculated assuming that the C(1)–OH bond is broken in the rate-controllin gstep of dehydration and those calculated for rupture of the carbon-carbon bond in the transition state. In the temperature interval of 90–130°C the experimental13C fractionation factors determined in concentrated PA approach quite closely the13C fractionation corresponding to C(2)–C(1) bond scission. the13C(1) kinetic isotope effects in the decarbonylation of LA in 85% orthophosphoric acid in the temperature range of 110–150°C coincide with the13C isotope effects calculated assuming that the frequency corresponding to the C(1)–OH vibration is lost in the transition state of decarbonylation. A change of the mechanism of decarbonylation of LA in going from concentrated PA medium to 85% H3PO4 has been suggested. A possible secondary18O and a primary18O kinetic isotope effect in decarbonylation of lactic acid in phosphoric acids media have been discussed, too.  相似文献   

5.
The13C kinetic isotope effect (K.I.E.) in the decarbonylation of formic acid of natural isotopic composition in 85% orthophosphoric acid, in 100% H3PO4, and in pyrophosphoric acid has been measured in different temperature intervals ranging from 19 to 133 °C. In 85% H3PO4 the carbon-13 K.I.E. is determined by the fractionation of carbon isotopes expected for C–O bond rupture (k 12/k 13=1.0531 at 70°C). In 100% H3PO4 the13C K.I.E. indicates that C–H bond rupture is the major component of the reaction coordinate motion (thek 12/k 13 lay in the range of 1.026–1.017 over the range 30–70 °C). In pyrophosphoric acid the fractionation factor for13C equals 1.010 at 19 °C. Activation parameters for the decarbonylation of H12COOH in phosphoric acid media have been determined also and suggestions concerning the intimate mechanisms of decarbonylation of formic acid in dilute and concentrated phosphoric acids are made.  相似文献   

6.
7.
The13C kinetic isotope fractionation in the decarbonylation of lactic acid of natural isotopic composition by sulfuric acid has been studied in the temperature range of 20–80°C. The13C(1) isotope separation in the decarbonylation of lactic acid by concentrated sulfuric acid depends strongly on the temperature above 40°C. Below this temperature the13C isotope effect in the decarbonylation of lactic acid by concentrated sulfuric acid is normal similarly as has been found inthe decarbonylation of lactic [1-14C] acid. The experimental values of k(12C)/k(13C) ratios of isotopic rate constants for12C and13C are close to, but slightly higher than theoretical13C-kinetic isotope effects calculated (neglecting tunneling) under the asumption that the C(1)-OH bond is broken in the rate-controlling step of the dehydration reaction. Dilution of concentrated sulfuric acid with water up to 1.4 molar (H2O)/(H2SO4) ratio caused the increase of the13C isotope fractionation from 1.0273 found in concentrated sulfuric acid at 80.5°C to 1.0536±0.0008 (at 80.6°C). A discussion of the abnormally high temperature dependence of14C and13C isotope fractionation in this reaction and the discussion of the problem of relative14C/13C kinetic isotope effects is given.  相似文献   

8.
9.
The isotopic composition of the consecutive fractions of carbon monoxide produced in the decarbonylation of liquid formic acid of natural isotopic composition initiated by addition of phosphorus pentoxide has been measured in the temperature interval 19–100°C and the observed gradual decrease of the PDB values and the increase of thek 12/k 13 ratio of the isotopic specific rate constants (KIE values) for each next fraction of CO have been interpreted in terms of conclusions presented in the first paper from this series1 concerning the decarbonylation of HCOOH (F.A.) in concentrated and diluted with water phosphoric acid media. The initial fast dehydration of F.A. by phosphoric anhydride, P2O5, proceeds at room temperture with about 1% carbon-13 KIE. The (k 12/k 13) values increase with time, as the decarbonylation slows down due to the hydration of phosphorus pentoxide with water generated in dehydration of HCOOH and reach the plateau values characteristic for each reaction temperature. These increasing very slowly with reaction times at intermediate temperatures maximum values of (k 12/k 13) ratios are quite close to values of13C KIE observed in the decarbonylation of pure F.A. (k 12/k 13=1.0443 at 81°C). Addition of water to liquid F.A. at 90°C and at 100°C caused the further increase of the13C KIE. The detailed discussion of the13C KIE in the HCOOH–P2O5 system has been given.  相似文献   

10.
11.
Nitrogen kinetic isotope effects on the decarboxylation of 4-pyridylacetic acid have been measured in solvents of different polarity and have been found to vary from the inverse value of 0.994 to the normal value of 1.002 upon increase of water content of the binary dioxane--water solvent from 25% to 75% (v/v), respectively. These changes were successfully modeled theoretically and shown to originate from the large inverse nitrogen isotope effect on the equilibrium between acidic and zwitterionic forms.  相似文献   

12.
13.
A general quantum-mechanical method for computing kinetic isotope effects is presented. The method is based on the quantum-instanton approximation for the rate constant and on the path-integral Metropolis-Monte Carlo evaluation of the Boltzmann operator matrix elements. It computes the kinetic isotope effect directly, using a thermodynamic integration with respect to the mass of the isotope, thus avoiding the more computationally expensive process of computing the individual rate constants. The method should be more accurate than variational transition-state theories or the semiclassical instanton method since it does not assume a single tunneling path and does not use a semiclassical approximation of the Boltzmann operator. While the general Monte Carlo implementation makes the method accessible to systems with a large number of atoms, we present numerical results for the Eckart barrier and for the collinear and full three-dimensional isotope variants of the hydrogen exchange reaction H + H2 --> H2 + H. In all seven test cases, for temperatures between 250 and 600 K, the error of the quantum instanton approximation for the kinetic isotope effects is less than approximately 10%.  相似文献   

14.
15.
16.
Deuterium kinetic isotope effects (KIEs) are reported for the first time for the dissociation of a protein-ligand complex in the gas phase. Temperature-dependent rate constants were measured for the loss of neutral ligand from the deprotonated ions of the 1:1 complex of bovine β-lactoglobulin (Lg) and palmitic acid (PA), (Lg + PA)(n-) → Lg(n-) + PA, at the 6- and 7- charge states. At 25 °C, partial or complete deuteration of the acyl chain of PA results in a measurable inverse KIE for both charge states. The magnitude of the KIEs is temperature dependent, and Arrhenius analysis of the rate constants reveals that deuteration of PA results in a decrease in activation energy. In contrast, there is no measurable deuterium KIE for the dissociation of the (Lg + PA) complex in aqueous solution at pH 8. Deuterium KIEs were calculated using conventional transition-state theory with an assumption of a late dissociative transition state (TS), in which the ligand is free of the binding pocket. The vibrational frequencies of deuterated and non-deuterated PA in the gas phase and in various solvents (n-hexane, 1-chlorohexane, acetone, and water) were established computationally. The KIEs calculated from the corresponding differences in zero-point energies account qualitatively for the observation of an inverse KIE but do not account for the magnitude of the KIEs nor their temperature dependence. It is proposed that the dissociation of the (Lg + PA) complex in aqueous solution also proceeds through a late TS in which the acyl chain is extensively hydrated such that there is no significant differential change in the vibrational frequencies along the reaction coordinate and, consequently, no significant KIE.  相似文献   

17.
Chlorine kinetic isotope effects exceeding semiclassical limits were observed in enzyme-catalyzed reactions, but their source has not been yet identified. Herein we show that unusually large chlorine kinetic isotope effects are associated with reactions in which chlorine is the central atom that is being passed between two heavy atoms. The origin of these large values is the ratio of imaginary frequencies for light-to-heavy species (the so-called temperature-independent factor).  相似文献   

18.
19.
20.
Intemolecular13C isotope effects in the decarbonylation of extra pure Merck liquid formic acid have been determined in the temperature interval 50–100 °C and compared to13C KIE observed in the decomposition of 99.9% liquid formic acid in the temperature range 60–100 °C. A very constants in the Arrhenius and Eyring equations have been calculated and found to be in a good agreement with the corresponding values ofBarham andClark.8  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号