首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Systemin (Sys) is an 18‐aa plant peptide hormone involved in the regulation of plant's defensive response. Sys is considered as a fast‐spreading systemic wound signal. We developed a simple and rapid CE method to monitor the spreading of Sys peptides through tomato plant. A 1,2,3‐triazole‐linked AZT‐systemin conjugate was designed as a model to study the possibility of translocating small cargo molecules 3'‐Azido‐2',3'‐dideoxythymidine by systemin. The Sys peptides (Sys, N‐propiolyl Sys, and AZT‐systemin conjugate) were injected into the stem and leaves of mature tomato plant. Its transportation throughout the plant tissue was traced by CE. The peptides were clearly visible in the crude tomato exudates and an optimum separation was achieved in 25 mM phosphate “buffer” at pH 2.5 and a voltage of 20 kV using uncoated fused silica capillary. CE analysis showed that Sys peptides are well separated from tomato plant exudates ingredients and are stable in tomato stem and leaf exudates for up to 24 h. CE study revealed that the Sys peptides are effectively spreading throughout tomato stem and leaves and the peptides could be directly detected in the crude plant matrixes. The translocation was strongly inhibited by sodium azide. The results showed that the established CE method can be used to characterize plant peptides spreading under plant physiological conditions.  相似文献   

2.
Capillary electrophoresis can be used successfully to analyse small peptides to give additional information to that obtained using high-performance liquid chromatography (HPLC). The separation of a modified adrenocorticotropic hormone (4-9) fragment (Org 2766) and several of its fragments was investigated using capillary zone electrophoresis. Prediction of migration in aqueous systems using pKa-related data and the migration behaviour using sodium dodecyl sulphate in the buffer are discussed, as is the choice of buffer systems. The electrophoretic patterns are compared with the HPLC separation.  相似文献   

3.
Novel bromine-containing positively charged labels 5-bromo-1-ethyl-thiazolium (BET+) and 5-bromo-1-ethyl-pyridinium (BEP+) ions were studied for improving the interpretation of MS/MS spectra of peptides. 2,5-Dibromo-1-ethyl-thiazolium tetrafluoroborate (DBET) reacts in the order: varepsilon->alpha-amino group>hydroxyl group of Tyr while 2,5-dibromo-1-ethyl-pyridinium tetrafluoroborate (DBEP) reacts preferably with thiol group of Cys>hydroxyl group of Tyr. In this study a simple and fast CE/MS/MS method is presented for investigating the labeling reaction with these new reagents, where the difference in migration times of labeled and unlabeled peptides also gives us information about the position of labeling. These bromine-containing reagents simplify the MS/MS spectra of peptides: the charge of the derivatives increases the intensity of the corresponding ions, thus enhancing the sensitivity of the detection and the characteristic distribution of the bromine isotope (the 79Br and 81Br ratio is nearly one) facilitating the recognition. By eliminating the non-doubled peaks, clear and easily interpretable MS/MS spectra can be produced that contain only the labeled fragments.  相似文献   

4.
5.
Marina ML  Torre M 《Talanta》1994,41(9):1411-1433
The most important characteristics of capillary electrophoresis are studied. Principles of the technique, instrumentation employed and the most important applications are described.  相似文献   

6.
After a shorthistorical introduction, the different modes of separation in capillary electrophoresis are explained and illustrated by practical examples. In addition, the most important parameters that can be used to optimize the selectivity of the separation, are discussed.  相似文献   

7.
8.
Capillary electrophoresis in acidic, isoelectric buffers is a novel methodology allowing fast protein and peptide analysis in uncoated capillaries. Due to the low pH adopted and to the use of dynamic coating with cellulose derivatives, silanol ionization is essentially suppressed and little interaction of macromolecules with the untreated wall occurs. In addition, due to the low conductivity of quasi-stationary, isoelectric buffers, high-voltage gradients can be applied (up to 800 V/cm) permitting fast peptide analysis with a high resolving power due to minimal diffusional peak spreading. Four such buffers are here described: cysteic acid (Cys-A, pI 1.85), iminodiacetic acid (IDA, pI 2.23), aspartic acid (Asp, pI 2.77) and glutamic acid (Glu, pI 3.22). A number of applications are reported, ranging from food analysis to the study of folding/unfolding transitions of proteins.  相似文献   

9.
A competitive immunoassay for neuropeptide Y (NPY) based on capillary electrophoresis (CE) with laser-induced fluorescence detection was developed utilizing polyclonal antisera as the immunoreagent and fluorescein-labeled NPY as the tracer. The assay was performed with on-line mixing of reagents, automated injections, and a 3 s separation time. The assay had a detection limit of 850 pM. To detect NPY at lower concentrations, the assay was coupled on-line to reversed-phase capillary liquid chromatography (LC). In this arrangement, 5 microL samples were preconcentrated by capillary LC and eluted by a gradient of isopropanol-containing mobile phase. The resulting chromatographic peaks were monitored by the CE immunoassay. With preconcentration, the concentration detection limit was improved to 40 microM and NPY could be measured in push-pull perfusion samples collected from the paraventricular nucleus of freely moving rats. The technique was extended to simultaneous detection of NPY and glucagon secretion from islets of Langerhans.  相似文献   

10.
Capillary zone electrophoresis is applied to investigate the recombinant insulin-like growth factor and recombinant hirudin. During the production of these peptides in S. cerevisiae, byproducts with small variations in the structure of the polypeptide chain are obtained. The different peptides are separated in a fused silica capillary and detected on-column by ultraviolet absorption or fluorescence. Separation times are 10–40 min. The excellent separation efficiencies obtained indicate that capillary zone electrophoresis is complementary to liquid chromatography in the analysis of these peptides.  相似文献   

11.
12.
13.
14.
The history and present status of capillary electrophoresis in China are critically reviewed. Features of major research and future prospects are described.  相似文献   

15.
Capillary electrophoresis on microchip   总被引:10,自引:0,他引:10  
Capillary electrophoresis and related techniques on microchips have made great strides in recent years. This review concentrates on progress in capillary zone electrophoresis, but also covers other capillary techniques such as isoelectric focusing, isotachophoresis, free flow electrophoresis, and micellar electrokinetic chromatography. The material and technologies used to prepare microchips, microchip designs, channel geometries, sample manipulation and derivatization, detection, and applications of capillary electrophoresis to microchips are discussed. The progress in separation of nucleic acids and proteins is particularly emphasized.  相似文献   

16.
The emerging field of quantitative systems biology uses high-throughput bioanalytical measurements to gain a deeper understanding of biological phenomena. With the advent of instrumentation platforms, capillary electrophoresis spans a very wide range of biological applications. This short article focuses on the exploitation of capillary electrophoresis for the systems-level analysis of cell signaling molecules.  相似文献   

17.
Issaq HJ 《Electrophoresis》1999,20(15-16):3190-3202
Capillary zone electrophoresis (CZE) and micellar electrokinetic capillary chromatography (MEKC) were used for the separation of widely different compounds from natural materials including compounds from tea, acids from different matrices, flavonoids and alkaloids, toxins and toxicological compounds, proteins and polypeptides, biogenic amines, phenolic compounds in alcoholic beverages, Chinese medicinal drugs, compounds in cells and cell extracts, and miscellaneous other applications. A section dealing with recent reviews related to natural products is also included.  相似文献   

18.
Uncontrolled aggregation of bacterial cells is a significant disadvantage of electrophoretic separations. Various aspects of the electrophoretic behavior of different strains of Gram‐positive Bacillus cereus, Bacillus subtilis, Sarcina lutea, Staphylococcus aureus(1), and Micrococcus luteus bacteria and Gram‐negative Escherichia coli bacteria were investigated in this study. Our findings indicate that bacteria can be rapidly analyzed by CZE with surface charge modification by calcium ions (Ca2+). Bound Ca2+ ions increase zeta potential to more than 2.0 mV and significantly reduce repulsive forces. Under the above conditions, bacterial cells create compact aggregates, and fewer high‐intensity signals are observed in electropherograms. The above can be attributed to the bridging effect of Ca2+ between bacterial cells. CE was performed to analyze bacterial aggregates in an isotachophoretic mode. A single peak was observed in the electropherogram.  相似文献   

19.
Capillary electrophoresis of inorganic anions   总被引:1,自引:0,他引:1  
This review deals with the separation mechanisms applied to the separation of inorganic anions by capillary electrophoresis (CE) techniques. It covers various CE techniques that are suitable for the separation and/or determination of inorganic anions in various matrices, including capillary zone electrophoresis, micellar electrokinetic chromatography, electrochromatography and capillary isotachophoresis. Detection and sample preparation techniques used in CE separations are also reviewed. An extensive part of this review deals with applications of CE techniques in various fields (environmental, food and plant materials, biological and biomedical, technical materials and industrial processes). Attention is paid to speciations of anions of arsenic, selenium, chromium, phosphorus, sulfur and halogen elements by CE.  相似文献   

20.
Capillary electroendoosmotic chromatography of peptides   总被引:1,自引:0,他引:1  
This review focuses on the current state of peptide separation by capillary electroendoosmotic chromatography (CEC). When carried out under optimised conditions, peptide separation by CEC methods represents an orthogonal and complementary technique to micro-HPLC (micro-HPLC) and high-performance capillary zone electrophoresis (HPCZE). The origin of the selectivity differences that can be achieved with these three separation techniques (CEC, micro-HPLC and HPCZE), respectively are discussed, and the current limits of performance with CEC methods documented. Peptide separations by CEC methods with n-alkyl bonded silicas or mixed-mode phases are also illustrated. The development of different variants of CEC and pressurised CEC (also commonly referred to in the literature as electrically-assisted micro-HPLC) are examined. The potential of coupling CEC systems to mass spectrometers for real-time analyses of peptides or protein digests has been examined. Several future directions for the application of this technique in phenotype/proteomic and zeomic mapping of naturally occurring peptides and proteins are highlighted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号