共查询到20条相似文献,搜索用时 15 毫秒
1.
Methane activation by laser-ablated, excited Group 11 metal atoms has been carried out, leading to generation of CH(3)-MH, CH(3)-M, and CH(3)-MH(-), which are identified in the product infrared spectra on the basis of isotopic shifts and correlation with DFT calculated frequencies. The products reveal that C-H insertion by excited Au, Ag, and Cu readily occurs, and subsequent hydride-detachment or electron addition also follows. Each type of product has similar photochemical properties regardless of the metal. DFT computed energies reveal facile hydride dissociation and high electron affinities for the insertion complexes. The methyl metal species have the shortest C-M bonds, consistent with their highest calculated effective bond order, and the CH(3)-MH complexes have higher electron affinities than the metal atoms. 相似文献
2.
Reactions of laser-ablated group 3 metal atoms with methyl halides have been carried out in excess of Ar during condensation and the matrix infrared spectra studied. The metals are as effective as other early transition metals in providing insertion products (CH3-MX) and higher oxidation state methylidene complexes (CH2-MHX) (X = F, Cl, Br) following alpha-hydrogen migration. Unlike the cases of the group 4-6 metals, the calculated methylidene complex structures show little evidence for agostic distortion, consistent with the previously studied group 3 metal methylidene hydrides, and the C-M bond lengths of the insertion and methylidene complexes are comparable to each other. However, the C-Sc bond lengths are 0.013, 0.025, and 0.029 A shorter for the CH2-ScHX complexes, respectively, and the spin densities are consistent with weak C(2p)-Sc(3d) pi bonding. The present results reconfirm that the number of valence electrons on the metal is important for agostic interaction in simple methylidene complexes. 相似文献
3.
Reactions of group 5 metal atoms and methyl halides give carbon-metal single, double, and triple bonded complexes that are identified from matrix IR spectra and vibrational frequencies computed by DFT. Two different pairs of complexes are prepared in reactions of methyl fluoride with laser-ablated vanadium and tantalum atoms. The two vanadium complexes (CH(3)-VF and CH(2)=VHF) are persistently photoreversible and show a kinetic isotope effect on the yield of CD(2)=VDF. Identification of CH(2)=TaHF and CH[triple bond]TaH(2)F(-), along with the similar anionic Nb complex, suggests that the anionic methylidyne complex is a general property of the heavy group 5 metals. Reactions of Nb and Ta with CH(3)Cl and CH(3)Br have also been carried out to understand the ligand effects on the calculated structures and the vibrational characteristics. The methylidene complexes become more distorted with increasing halogen size, while the calculated C=M bond lengths and stretching frequencies decrease and increase, respectively. The anionic methylidyne complexes are less favored with increasing halogen size. Infrared spectra show a dramatic increase of the Ta methylidenes upon annealing, suggesting that the formation of CH(3)-TaX and its conversion to CH(2)=TaHX require essentially no activation energy. 相似文献
4.
The ethynyl metal hydride molecules (HM-C≡CH) are identified in the matrix infrared spectra from reactions of laser-ablated Mn and Re atoms with acetylene using D and (13)C isotopic substitution and density functional computed frequencies. The assignment of strong M-H as well as C≡C bond stretching product absorptions suggests oxidative C-H insertion during reagent codeposition and subsequent photolysis. The unique linear structure calculated for HMn-C≡CH is parallel to C(3v) structures found recently for Mn complexes including CH(3)-MnF. 相似文献
5.
Reactions of laser-ablated group 6 metal atoms with ethylene have been investigated. The insertion and dihydrido products (MH-CHCH(2) and MH(2)-C(2)H(2)) are identified from reactions of W and Mo with ethylene isotopomers, whereas products in the Cr spectra are assigned to the insertion and metallacyclopropane (M-C(2)H(4)) complexes. Our experiments with CH(2)CD(2) show that the dihydrido complex is formed by beta-hydrogen transfer in the insertion complex because the MHD-CHCD isotopic product is favored. The present matrix infrared spectra and DFT computational results support the general trend that the higher oxidation-state complexes become more stable on going down the group 6 column. Unlike the cases of group 4 and 5 metals, binary metal hydride (MH(x)) absorptions are not observed in the infrared spectra, suggesting that the H(2)-elimination reactions of ethylene by group 6 metals are relatively slow, consistent with previous gas-phase reaction dynamics studies. 相似文献
6.
The simple methylidene and methylidyne complexes (CH2=MHX and CH[triple bond]MH2X; X = F, Cl, Br, and I) are prepared in reactions of laser-ablated Mo and W atoms with the methyl halides and investigated by matrix infrared spectroscopy and density functional theory calculations. These complex structures are photoreversible: visible irradiation converts the methylidene complex to the methylidyne complex, and UV irradiation reverses this effect via alpha-hydrogen migration. While the higher oxidation state complexes are readily formed regardless of halogen size, the Mo methylidyne complex is relatively less favored with increasing halogen size, and the W complex shows the opposite tendency. The group 6 metal methylidenes are predicted to have the most agostically distorted structures among the early transition-metal methylidenes. The computed carbon-metal bond shortens with increasing halogen size for both the methylidene and methylidyne complexes. Harmonic and anharmonic frequencies computed by DFT converge on the experimental values and thus provide support for the identification of these new Mo and W complexes. 相似文献
7.
The simple methylidene (CH2=TiHX) and Grignard-type (CH3TiX) complexes are produced by reaction of methyl chloride and bromide with laser-ablated Ti atoms and isolated in a solid Ar matrix, and they form a persistent photoreversible system via alpha-hydrogen migration between the carbon and titanium atoms. The Grignard-type product is transformed to the methylidene complex upon UV (240 nm < lambda < 380 nm) irradiation and vice versa with visible (lambda > 530 nm) irradiation. More stable dimethyl dihalide complexes [(CH3)2TiX2] are also identified, whose relative concentration increases upon annealing and at high methyl halide concentration. The reaction products are identified with three different groups of absorptions on the basis of the behaviors upon broadband photolysis and annealing, and the vibrational characteristics are in a good agreement with DFT computation results. 相似文献
8.
Laser-ablated W atoms react with CH4 in excess argon to form the CH3-WH, CH2=WH2, and CH[triple bond]WH3 molecules with increasing yield in this order of product stability. These molecules are identified from matrix infrared spectra by isotopic substitution. Tungsten methylidene and methylidyne hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. Matrix infrared spectra and DFT/B3LYP calculations show that CH[triple bond]WH3 is a stable molecule with C3v symmetry, but other levels of theory were required to describe agostic distortion for CH2=WH2. Analogous reactions with Cr gave only CH3-CrH, which is calculated to be by far the most stable product. 相似文献
9.
Simple molybdenum methyl, carbene, and carbyne complexes, [CH3--MoF], [CH2=MoHF], and [CH[triple chemical bond]MoH(2)F], were formed by the reaction of laser-ablated molybdenum atoms with methyl fluoride and isolated in an argon matrix. These molecules provide a persistent photoreversible system through alpha-hydrogen migration between the carbon and metal atoms: The methyl and carbene complexes are produced by applying UV irradiation (240-380 nm) while the carbyne complex is depleted, and the process reverses on irradiation with visible light (lambda>420 nm). An absorption at 589.3 cm(-1) is attributed to the Mo--F stretching mode of [CH3--MoF], which is in fact the most stable of the plausible products. Density functional theory calculations show that one of the alpha-hydrogen atoms of the carbene complex is considerably bent toward the metal atom (angle-spherical HCMo=84.5 degrees ), which provides evidence of a strong agostic interaction in the triplet ground state. The calculated C[triple chemical bond]Mo bond length in the carbyne is in the range of triple-bond values in methylidyne complexes. 相似文献
10.
Fernández LE Altabef AB Fantoni AC Varetti EL 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2000,56(12):2379-2389
The infrared and Raman spectra were obtained for liquid CF3SO2CH3, as well as the infrared spectrum of the gaseous substance. The molecular geometry was optimized by means of the Hartree-Fock (HF), second order electron correlation (MP2) and density functional theory (DFT) procedures of quantum chemistry, resulting in a structure with Cs symmetry. The wavenumbers corresponding to the normal modes of vibration were calculated using the DFT (B3LYP/6-31G**) approximation and their agreement with the measured values improved after scaling of the associated force field. An assignment of bands is proposed on the basis of such calculations and the comparison with related molecules. 相似文献
11.
Laser-ablated Ti atoms react with CH(3)F upon condensation with excess argon to form primarily CH(3)TiF and (CH(3))(2)TiF(2). Irradiation in the UV region promotes alpha-hydrogen rearrangement of CH(3)TiF to CH(2)=TiHF and increases the yield of (CH(3))(2)TiF(2). Annealing to allow diffusion and reaction of more CH(3)F markedly increases the yield of (CH(3))(2)TiF(2). This shows that the CH(3)TiF + CH(3)F reaction is spontaneous and that triplet state CH(3)TiF is an extremely reactive molecule. B3LYP calculations are extremely effective in predicting vibrational frequencies and isotopic shifts for CH(3)TiF and (CH(3))(2)TiF(2) and thus in confirming their identification from matrix infrared spectroscopy. 相似文献
12.
O. Sokolov M. D. Hurley J. C. Ball T. J. Wallington W. Nelsen I. Barnes K. H. Becker 《国际化学动力学杂志》1999,31(5):357-359
The kinetics of the reactions of Cl atoms with CH3ONO and CH3ONO2 have been studied using relative rate techniques. In 700 Torr of nitrogen diluent at 295 ± 2K, k(Cl + CH3ONO) = (2.1 ± 0.2) × 10−12 and k(Cl + CH3ONO2) = (2.4 ± 0.2) × 10−13 cm3 molecule−1 s−1. The result for k(Cl + CH3ONO2) is in good agreement with the literature data. The result for k(Cl + CH3ONO) is a factor of 4.5 lower than that reported previously. It seems likely that in the previous study most of the loss of CH3ONO which was attributed to reaction with Cl atoms was actually caused by photolysis leading to an overestimate of k(Cl + CH3ONO). © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 357–359, 1999 相似文献
13.
A development of the RECP method for the case of transition and rare earth elements is suggested. New terms with projectors on the occupation numbers ofd andf outermost shells respectively (which can be determined in SCF iterations) are added to the standard RECP operator and the corresponding self-consistent RECP terms are generated for atoms Cu, Ag and Au. Significant improvement is achieved in reproduction of atomic excitation energies as compared with the conventional shape-consistent RECP calculation. 相似文献
14.
Ratios between the distances, energies, and force constants of molecules (M2) and corresponding solids (M) were shown to be approximately equal for elements of Groups 1a and 1b of the Periodic Table. It follows from elementary calculations that the different physical properties of these elements are determined by the electronic structure of isolated atoms, and there is no need to introduce the concepts and values of “metal” valences for Cu, Ag, and Au in solid state. 相似文献
15.
Methane activation by group 5 transition-metal atoms in excess argon and the matrix infrared spectra of reaction products have been investigated. Vanadium forms only the monohydrido methyl complex (CH3-VH) in reaction with CH4 and upon irradiation. On the other hand, the heavier metals form methyl hydride and methylidene dihydride complexes (CH3-MH and CH2=MH2) along with the methylidyne trihydride anion complexes (CHMH3-). The neutral products, particularly the methylidene complex, increase markedly on irradiation whereas the anionic product depletes upon UV irradiation or addition of a trace of CCl4 or CBr4 to trap electrons. Other absorptions that emerge on irradiation and annealing increase markedly at higher precursor concentration and are attributed to a higher-order product ((CH3)2MH2)). Spectroscopic evidence suggests that the agostic Nb and Ta methylidene dihydride complexes have two identical metal-hydrogen bonds. 相似文献
16.
The rate coefficients for the reactions of Cl atoms with CH3Br, (k1) and CH2Br2, (k2) were measured as functions of temperature by generating Cl atoms via 308 nm laser photolysis of Cl2 and measuring their temporal profiles via resonance fluorescence detection. The measured rate coefficients were: k1 = (1.55 ± 0.18) × 10?11 exp{(?1070 ± 50)/T} and k2 = (6.37 ± 0.55) × 10?12 exp{(?810 ± 50)/T} cm3 molecule?1 s?1. The possible interference of the reaction of CH2Br product with Cl2 in the measurement of k1 was assessed from the temporal profiles of Cl at high concentrations of Cl2 at 298 K. The rate coefficient at 298 K for the CH2Br + Cl2 reaction was derived to be (5.36 ± 0.56) × 10?13 cm3 molecule?1 s?1. Based on the values of k1 and k2, it is deduced that global atmospheric lifetimes for CH3Br and CH2Br2 are unlikely to be affected by loss via reaction with Cl atoms. In the marine boundary layer, the loss via reaction (1) may be significant if the Cl concentrations are high. If found to be true, the contribution from oceans to the overall CH3Br budget may be less than what is currently assumed. © 1994 John Wiley & Sons, Inc. 相似文献
17.
Reaction of laser-ablated Mo atoms with CH(4) in excess argon forms the CH(3)-MoH, CH(2)=MoH(2), and CH(triple bond)MoH(3) molecules, which are identified from infrared spectra by isotopic substitution and density functional theory frequency calculations. These simple methyl, methylidene, and methylidyne molybdenum hydride molecules are reversibly interconverted by alpha-H transfers upon visible and ultraviolet irradiations. The methylidene dihydride CH(2)=MoH(2) exhibits CH(2) and MoH(2) distortion and agostic interaction to a lesser degree than CH(2)=ZrH(2). Molybdenum methylidyne trihydride CH(triple bond)MoH(3) is a stable C(3v) symmetry molecule. 相似文献
18.
A photoreversible transition-metal methylidene system has been formed for the first time by reaction of methyl fluoride and laser-ablated Zr atoms, isolated in solid argon, and investigated by means of infrared spectroscopy. Four different groups of absorptions are characterized on the basis of behaviors upon broad-band irradiation and sample annealing. Growth of Group I is accompanied by demise of Group II on irradiation with visible light (lambda > 530 nm) and vice versa with UV light (240 < lambda < 380 nm). The methylidene complex CH(2)=ZrHF is responsible for Groups I and II either in different singlet-triplet spin states or argon matrix packing configurations. The ground singlet state is stabilized by an agostic interaction. On the other hand, Group III, which arises from the Grignard type compound CH(3)-ZrF, disappears upon irradiation of UV light (lambda > 380 nm), increasing the concentration of CH(2)=ZrHF by alpha-H elimination. Fragments of methyl fluoride such as the CH(2)F radical comprise Group IV. Theoretical calculations are carried out for the alkylidene complex and other plausible products, and the results are compared with the experimental frequencies. 相似文献
19.
近年来, 我们在研究含氟烯烃和烷烃的红外激光诱导氧化和氯化反应的基础上, 深入研究了红外激光诱导卤代烷烃的脱卤化氢并生成: CF2卡宾和:CFCF3卡宾的反应[1-4]以往的研究往往是根据反应产物推论反应机理, 认为在反应过程中存在着卡宾中间体,但在实验中未能直接检测到. Kakimoto[5,6]曾报道过在流动体系中测到了.F+CH3F和.F+CH3Cl反应中:CHF和:CHCl的激光荧光激发谱, 但没有讨论卡宾形成的机理.Hirota[7]在讨论.F+CH3F反应时, 认为:CHF可能由攫氢过程产生而对于.F+CH3Cl反应同时生成:CHF和:CHCl未做说明. 本实验中用扩散分子束代替了流动反应体系, 从而大大减少了产物和反应物气体分子间的猝灭过程, 获得了信噪比大而清晰的图谱, 由此确证了:CHF和:CHCl的存在, 说明了.F+CH3Cl反应中自由基攫氢过程和偶合反应过程共存的反应历程. 这一结论对红外激光诱导一碳卤代宾化学反应机理研究有重要参考意义. 相似文献
20.
The reactions with CH3F of photochemically produced tritium atoms from TBr have been studied at various wavelengths. The energy threshold is lower and the relative yield higher for F replacement than for H replacement in CH3F. These near-threshold substitution reactions are consistent with an inversion mechanism. 相似文献