首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoreactions of 4-nitroanisole and the 2-halo-4-nitroanisoles (halogen = F, Cl, Br, and I) with the nucleophiles hydroxide ion and pyridine have been investigated quantitatively to extend the findings recently communicated for cyanide ion. The halonitroanisoles on excitation form triplet pi,pi* states, which undergo substitution of the halogen by nucleophiles. Chemical yields of photoproducts, Stern-Volmer kinetic plots, triplet lifetimes, and triplet yields are reported for the five compounds with the three nucleophiles. Following a standard kinetic treatment, 73 rate constants are determined for elementary reactions of the triplets including quenching and various nucleophilic addition processes. The photoadditions are roughly 14 orders of magnitude faster than thermal counterparts. Rate constants for attack at the fluorine-bearing carbon of triplet 2-fluoro-4-nitroanisole are 2.9 x 10(9), 1.3 x 10(9), and 6.3 x 10(8) M(-1) s(-1) for cyanide ion, hydroxide ion, and pyridine, respectively. The relative rates for attack at the halogen-bearing carbons for F/Cl/Br/I are 27:1.9:1.9:1 (cyanide ion), 29:2.6:2.4:1 (hydroxide ion), and 39:3.9:3.5:1 (pyridine), respectively. The relative nucleophilicities vary somewhat with the attack site; they are about 5:2:1 for cyanide ion, hydroxide ion, and pyridine for attack at the halogen-bearing carbons. The trend of the element effect opposes that of aliphatic substitution and elimination but is similar in size and parallel to that of thermal nucleophilic aromatic substitution. Relative nucleophilicities in the photoreactions are also similar to those of comparable but vastly slower thermal reactions. The findings imply that the efficiency-determining step of the halogen photosubstitution is simple formation of a sigma-complex through electron-paired bonding within the triplet manifold.  相似文献   

2.
The triplet yields and lifetimes of a series of substituted benzophenones have been detemined by their efficiency in sensitizing biacetyl phosphorescence, in benzene solution.The triplet decay constants of nine para-substituted derivatives show a satisfactory Hammett-type correlation. The results are discussed on the basis of a reversible interaction of the excited ketones with the solvent. Possible factors which may be responsible for the inefficiency of sensitization are also discussed.  相似文献   

3.
Carotenoid triplet state lifetimes   总被引:1,自引:0,他引:1  
Carotene and xanthophyll triplet lifetimes are found to depend on the concentration of the parent molecule. These results account for some of the variations in carotenoid triplet lifetimes reported previously. The rate constants obtained for ground state quenching correlate with the number of conjugated double bonds, the longer chain systems having higher quenching rate constants.  相似文献   

4.
An investigation of the photophysics of two complexes, [Pt((t)Bu3tpy)(C triple bond C-perylene)]BF4 (1) and Pt((t)Bu2bpy)(C triple bond C-perylene)2 (2), where (t)Bu3tpy is 4,4',4'-tri( tert-butyl)-2,2':6',2'-terpyridine, (t)Bu2bpy is 4,4'-di( tert-butyl)-2,2'-bipyridine, and C triple bond C-perylene is 3-ethynylperylene, reveals that they both exhibit perylene-centered ligand localized excited triplet states ((3)IL) upon excitation with visible light. These complexes do not display any significant photoluminescence at room temperature but readily sensitize (1)O2 in aerated CH2Cl2 solutions, as evidenced by its characteristic emission near 1270 nm. The transient absorption difference spectra were compared to bi- and tridentate phosphine peryleneacetylides intended to model the (3)IL peryleneacetylide excited states in addition to the related phenylacetylide-bearing polyimine analogues, with the latter model being the respective triplet charge-transfer ((3)CT) excited states. The transient difference spectra of the two title compounds display excited-state absorptions largely attributable to perylene localized (3)IL states yet exhibit somewhat attenuated excited-state lifetimes relative to those of the phosphine model chromophores. The abbreviated lifetimes in 1 and 2 may suggest the involvement of the energetically proximate (3)CT triplet state exerting an influence on excited-state decay, and the effect appears to be stronger in 1 relative to 2, consistent with the energies of their respective (3)CT states.  相似文献   

5.
Absolute rate constants for hydrogen abstraction from 4-methylphenol (para-cresol) by the lowest triplet states of 24 aromatic ketones have been determined in acetonitrile solution at 23 degrees C, and the results combined with previously reported data for roughly a dozen other compounds under identical conditions. The ketones studied include various ring-substituted benzophenones and acetophenones, alpha,alpha,alpha-trifluoroacetophenone and its 4-methoxy analog, 2-benzoylthiophene, 2-acetonaphthone, and various other polycyclic aromatic ketones such as fluorenone, xanthone and thioxanthone, and encompass n,pi*, pi,pi*(CT) and arenoid pi,pi* lowest triplets with (triplet) reduction potentials (E(red)*) varying from about -10 to -38 kcal mol(-1). The 4-methylphenoxyl radical is observed as the product of triplet quenching in almost every case, along with the corresponding hemipinacol radical in most instances. Hammett plots for the acetophenones and benzophenones are quite different, but plots of log k(Q) vs E(red)* reveal a common behavior for most of the compounds studied. The results are consistent with reaction via two mechanisms: a simple electron-transfer mechanism, which applies to the n,pi* triplet ketones and those pi,pi* triplets that possess particularly low reduction potentials, and a coupled electron-/proton-transfer mechanism involving the intermediacy of a hydrogen-bonded exciplex, which applies to the pi,pi* ketone triplets. Ketones with lowest charge-transfer pi,pi* states exhibit rate constants that vary only slightly with triplet reduction potential over the full range investigated; this is due to the compensating effect of substituents on triplet state basicity and reduction potential, which both play a role in quenching by the hydrogen-bonded exciplex mechanism. Ketones with arenoid pi,pi* states exhibit the fall-off in rate constant that is typical of photoinduced electron transfer reactions, but it occurs at a much higher potential than would be normally expected due to the effects of hydrogen-bonding on the rate of electron-transfer within the exciplex.  相似文献   

6.
The electronic quenching rate constants of NO A(2)Σ (υ'=0, 1), E(2)Σ (υ'=2, 3, 4) and F(2)Δ (υ'=1, 2, 3) states by gas air are reported. The experiments were carried out by measuring the total fluorescence intensity of A(2)Σ (υ'=0, 1)→X(2)Π (υ″) transition at various air pressures. It gives the Stern-Volmer plots. The quenching rate constants of A(2)Σ (υ'=0, 1) states are obtained from the slope of Stern-Volmer plots and the known radiative lifetime. Based on the primary results of the work, we have measured the quenching rate constants of high excited E(2)Σ (υ'=2, 3, 4), F(2)Δ (υ'=1, 2, 3) states for the first time with the technique of photo-acoustic (PA) spectroscopy. It is shown that the electronic quenching rate constants of NO E (υ') and F (υ') states are in the order of 10(-10)cm(3)/molecules. They are much larger than those of A(2)Σ (υ') state, whose rate constants are in the order of 10(-13)cm(3)/molecules. For E (υ') and F (υ') states, it is also found that the quenching rate constants increase with the vibrational energy levels. Similar result has been reported also for A(2)Σ (υ'≥2) states in existing literatures. The agreement indicates the potential use of PA spectroscopy for measuring the electronic quenching rate.  相似文献   

7.
Persistent triplet diphenylcarbenes with considerable stability have been shown to be trapped by tetramethylpiperidine N-oxides (TEMPOs) to give the corresponding benzophenones as major products along with tetramethylpiperidine, which indicates that the reaction pattern is essentially identical with that observed for parent triplet diphenylcarbene. The absolute rate constants for the quenching reaction were measured by a laser flash photolysis technique and compared with those for quenching by other typical triplet carbene quenchers. The results showed that the reactivity of TEMPOs toward triplet carbenes was lower than that of oxygen but higher than that of 1,4-cyclohexadiene. The advantages of TEMPOs as a triplet carbene quencher as opposed to the other quenchers are discussed, and TEMPOs are shown to be very convenient reagents to estimate the reactivity of triplet carbenes.  相似文献   

8.
Abstract— The triplet-triplet absorption spectra of six polyenes have been characterised using flash photolysis, in the presence of anthracene as sensitizer, and pulse radiolysis, in the absence of a sensitizer. The polyenes include several which contain carbonyl groups whose triplet states, unlike retinal , could not be detected unsensitized by flash photolysis. The triplet lifetimes appear to be a function of the number of conjugated double bonds, and vary between 7 and 14 μ sec. In general, the longer the polyene, the shorter the lifetime. An empirical linear relation was found between the frequencies of the polyene triplet-triplet absorption maxima, and the frequencies of the corresponding ground singlet-singlet maxima. The rate constants for quenching by oxygen of nine polyene triplet states were determined to lie in the range 2–7 × 109 M -1 sec-1. The possible mechanisms for oxygen quenching of triplet states are discussed and analogies between the results for oxygen quenching of polyenes and of polyacenes are drawn. The rate constant for oxygen quenching of all- trans -β-carotene triplet was the same in benzene and hexane.  相似文献   

9.
Measurements of active encounters between molecules in native membranes containing ingredients, including proteins, are of prime importance. To estimate rare encounters in a high range of rate constants (rate coefficients) and distances between interacting molecules in membranes, a cascade of photochemical reactions for molecules diffusing in multilamellar liposomes was investigated. The sensitised cascade triplet cis-trans photoisomerisation of the excited stilbene involves the use of a triplet sensitiser (Erythrosin B), a photochrome stilbene-derivative probe (4-dimethylamino-4'-aminostilbene) exhibiting the phenomenon of trans-cis photoisomerisation, and nitroxide radicals (5-doxyl stearic acid) to quench the excited triplet state of the sensitiser. Measurement of the phosphorescence lifetime of Erythrosin B and the fluorescence enhancement of the stilbene-derivative photochrome probe, at various concentrations of the nitroxide probe, made it possible to calculate the quenching rate constant k(q)= 1.1 x 10(15) cm2 M(-1) s(-1) and the rate constant of the triplet-triplet energy transfer between the sensitiser and stilbene probe k(T)= 1.0 x 10(12) cm2 M(-1) s(-1). These values, together with the data on diffusion rate constant, obtained by methods utilising various theoretical characteristic times of about seven orders of magnitude and the experimental rate constants of about five orders of magnitude, were found to be in good agreement with the advanced theory of diffusion-controlled reactions in two dimensions. Because the characteristic time of the proposed cascade method is relatively large (0.1 s), it is possible to follow rare collisions between molecules and free radicals in model and biological membranes with a very sensitive fluorescence spectroscopy technique, using a relatively low concentration of probes.  相似文献   

10.
Abstract— The production of singlet oxygen by thiazine dye photosensitization, as measured by the rate of photooxidation of tryptophan, was found to be very sensitive to changes of pH in the range 5–9. For methylene blue in aerated solutions, the production of 1O2* is approximately five times more efficient in basic than in acidic medium. This was shown to be related to the p K 's of the triplet dyes, by evaluating the yields of 1O2* from the lifetimes and the quenching rate constants for the two ionic species of sensitizer triplets measured by laser flash photolysis. Changes in the quenching rate constants of the thiazine triplet states can be correlated with the triplet energies.  相似文献   

11.
The quenching of excited triplet states of sufficient energy by O2 leads to O2(1sigma(g)+) and O2(1delta(g)) singlet oxygen and O2(3sigma(g)-) ground-state oxygen as well. The present work investigates the question whether in the absence of charge transfer (CT) interactions between triplet sensitizer and O2 the rate constants of formation of the three different O2 product states follow a generally valid energy gap law. For that purpose, lifetimes of the upper excited O2(1sigma(g)+) have been determined in a mixture of 7 vol % benzene in carbon tetrachloride, in chloroform, and in perdeuterated acetonitrile. They amount to 1.86, 1.40, and 0.58 ns, respectively. Furthermore, rate constants of O2(1sigma(g)+), O2(1delta(g)), and O2(3sigma(g)-) formation have been measured in these three solvents for five pi pi* triplet sensitizers with negligible CT interactions. The rate constants are independent of solvent polarity. After normalization for the multiplicity of the respective O2 product state, the rate constants follow a common dependence on the excess energies of the respective product channels. This empirical energy gap relation describes also quantitatively the rate constants of quenching of O2(1delta(g)) by 28 carotenoids. Therefore, it represents in the absence of CT interactions a generally valid energy gap law for the rate constants of electronic energy transfer to and from O2.  相似文献   

12.
A series of heteroleptic bis(tridentate) ruthenium(II) complexes, each bearing a substituted 2,2':6',2″-terpyridine (terpy) ligand, is characterized by room temperature microsecond excited-state lifetimes. This observation is a consequence of the strongly σ-donating and weakly π-accepting tridentate carbene ligand, 2',6'-bis(1-mesityl-3-methyl-1,2,3-triazol-4-yl-5-idene)pyridine (C(∧)N(∧)C), adjacent to the terpy maintaining a large separation between the ligand field and metal-to-ligand charge transfer (MLCT) states while also preserving a large (3)MLCT energy. The observed lifetimes are the highest documented lifetimes for unimolecular ruthenium(II) complexes and are four orders in magnitude higher than that associated with [Ru(terpy)(2)](2+).  相似文献   

13.
The complexation of N-methylcarbazole and N-methylindole by trimeric perfluoro-o-phenylene mercury (1), which can be readily observed in CH2Cl2 solution, leads to the formation of [1.N-methylindole] (2) and [1.N-methylcarbazole] (3) as solid adducts. The solid-state photoluminescence spectra of these adducts show intense emission bands attributed to monomer phosphorescence of N-methylindole and N-methylcarbazole, respectively, with microsecond lifetimes. Remarkably, the triplet lifetimes of the heterocycles in 2 and 3 are shortened by 5 orders of magnitude when compared to those of the free heterocycles. These results are rationalized by invoking the combined external and internal spin-orbit coupling perturbation provided by the mercury and nitrogen atoms.  相似文献   

14.
Singlet-oxygen quenching constants were measured for 19 cyanine dyes in acetonitrile. The most efficient quenchers were 1-butyl-2-[2-[3-[(1-butyl-6-chlorobenz-[cd]indol-2(1H)- ylidene)ethylidene]-2-chloro-1-cyclohexen-1-yl]ethenyl]-6-chlorobenz[cd] indolium and 6-chloro-2-[2-[3-(6-chloro-1-ethylbenz[cd]indol-2(1H)-ylidene) ethylidene]-2-phenyl-1-cyclopenten-1-yl]ethenyl]-1-ethyl-benz[cd]indolium, having quenching constants with diffusion-controlled values of 2.0 +/- 0.1 x 10(10) and 1.5 +/- 0.1 x 10(10) M-1 s-1, respectively. There was a trend toward increased quenching constants for cyanine dyes with the absorption band maxima at longer wavelengths. However, the quenching constants correlated better with the oxidation potentials of the cyanine dyes, suggesting that quenching proceeds by charge transfer rather than energy transfer. The quenching constants for 1,1',3,3,3',3'-hexamethylindotricarbocyanine perchlorate and 1,1'-diethyl-4,4'-carbocyanine iodide were measured in several solvents as well as in aqueous solutions of detergent micelles. In different solvents, the quenching constants varied by as much as a factor of 50. The quenching constants were largest in solvents with the highest values on the pi* scale of Kamlet, Abboud, Abraham and Taft. This was consistent with quenching occurring by charge transfer. Within cells, cyanine dyes concentrate in membrane-bound organelles. The quenching constants were substantial within detergent micelles. To the extent that micelles are models for biological membranes, cyanine dyes may be effective biological singlet-oxygen quenchers.  相似文献   

15.
The photophysical properties of closely-coupled, binuclear complexes formed by connecting two ruthenium(II) bis(2,2':6',2'-terpyridine) complexes via an alkynylene group are compared to those of the parent complex. The dimers exhibit red-shifted emission maxima and prolonged triplet lifetimes in deoxygenated solution. Triplet quantum yields are much less than unity and the dimers generate singlet molecular oxygen with low quantum efficiency. Temperature dependence emission studies indicate coupling to higher-energy triplet states while cyclic voltammetry shows that the metal centres are only very weakly coupled but that extensive electron delocalization occurs upon one-electron reduction. The radiative rate constants derived for these dimers are relatively low, because the lowest-energy metal-to-ligand, charge-transfer states possess increased triplet character. In contrast, the rate constants for nonradiative decay of the lowest-energy triplet states are kept low by extended electron delocalization over the polytopic ligand. The poor triplet yields are a consequence of partitioning at the second triplet level.  相似文献   

16.
Photophysical properties in dilute MeCN solution are reported for seven RuII complexes containing two 2,2′‐bipyridine (bpy) ligands and different third ligands, six of which contain a variety of 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridines, for one complex containing no 2,2′‐bipyridine, but 2 of these different ligands, for three multinuclear RuII complexes containing 2 or 4 [Ru(bpy)2] moieties and also coordinated via 4,4′‐carboxamide‐disubstituted 2,2′‐bipyridine ligands, and for the complex [(Ru(bpy)2(L)]2+ where L is N,N′‐([2,2′‐bipyridine]‐4,4′‐diyl)bis[3‐methoxypropanamide]. Absorption maxima are red‐shifted with respect to [Ru(bpy)3]2+, as are phosphorescence maxima which vary from 622 to 656 nm. The lifetimes of the lowest excited triplet metal‐to‐ligand charge transfer states 3MLCT in de‐aerated MeCN are equal to or longer than for [Ru(bpy)3]2+ and vary considerably, i.e., from 0.86 to 1.71 μs. Rate constants kq for quenching by O2 of the 3MLCT states were measured and found to be well below diffusion‐controlled, ranging from 1.2 to 2.0⋅109 dm3 mol−1 s−1. The efficiencies f of singlet‐oxygen formation during oxygen quenching of these 3MLCT states are relatively high, namely 0.53 – 0.89. The product of kq and f gives the net rate constant k for quenching due to energy transfer to produce singlet oxygen, and kqk equals k, the net rate constant for quenching due to energy dissipation of the excited 3MLCT states without energy transfer. The quenching rate constants were both found to correlate with ΔGCT, the free‐energy change for charge transfer from the excited Ru complex to oxygen, and the relative and absolute values of these rate constants are discussed.  相似文献   

17.
Previous steady state and time resolved spectroscopic studies on porphyrins have shown that the triplet lifetimes of those sensitizers that bind to lens proteins are lengthened by several orders of magnitude. Presented here is an extension of this experiment to measure these transients in an intact bovine lens. As demonstrated by steady state fluorescence spectroscopy and flash photolysis, mesotetra (p-sulfonatophenyl)porphyrin (TPPS) binds to lens proteins. In air-saturated aqueous solution, TPPS has a triplet lifetime of 2 microseconds. In an intact bovine lens the triplet state decayed via biexponential kinetics with lifetimes of 0.16 and 1.6 microseconds. In addition to a lengthening of the lifetime there was a red shift in the triplet transient spectra of 10-20 nm of the porphyrin in the intact lenses.  相似文献   

18.
The solvent viscosity dependence of the photophysical and photochemical properties of tetra(tert-butylphenoxy)phthalocyaninato zinc(II) (ZnTBPPc) is presented. The fluorescence quantum yields (ΦF) and Stern-Volmer′s constant (KSV) for ZnTBPPc fluorescence quenching by benzoquinone in all the solutions followed a semi-empirical law that depends only on the solvent viscosity. ΦF values vary between 0.08 in tetrahydrofuran (THF) and 0.14 in dimethylsulphoxide (DMSO). Triplet quantum yields (ΦT) and lifetimes (...  相似文献   

19.
《Chemical physics》2001,263(2-3):437-447
The fluorescence spectra, quantum yields and lifetimes of C70 and a pseudo-dihydro derivative (C70R) have been measured in a wide range of solvents at room temperature. This information is important for the development of reverse saturable absorbers. Phosphorescence spectra and phosphorescence lifetimes were also measured at low temperature. The fluorescence is subject to quenching by halogenated compounds. The efficiency of quenching follows the order I>Br≫Cl. The nature of the quenching is shown to vary, with chlorinated compounds exhibiting static quenching of fullerene fluorescence, owing to nonfluorescent complex formation, whilst those compounds containing bromine and iodine exhibit dynamic quenching due to the external heavy-atom effect, that increases the intersystem crossing rate constant in the fluorophore–perturber complex. This constant is evaluated by an original method from the bimolecular quenching rate constants. The phosphorescence quantum yield of both fullerenes at 77 K slightly increases in the presence of iodobenzene, in spite of a strong decrease in phosphorescence lifetime. The marked increase of the intersystem crossing rate constant in concentrated solutions owing to the external heavy-atom effect is of interest for the application of fullerenes as fast-responding optical limiters (reverse saturable absorbers) of intense laser pulses, even in cases where the triplet quantum yield is of the order of unity.  相似文献   

20.
From the study of triplet exciton trapping in 1,4-dibromonaphthalene it appears that several optically accessible excitons can exist with excitation energies within 1 cm?1 and lifetimes differing by two orders of magnitude. Furthermore trap-like states exist ≈ cm?1 below the exciton band. Delayed fluorescence arises from annihilation between an exciton and the very shallow trap-like state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号