首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adsorption of Th(IV) (total concentration, 10(-5)-10(-4) mol/L) was studied by a batch technique. The effects of pH, ionic strength, contact time, and phosphate on the adsorption of Th(IV) onto alumina were investigated. Adsorption isotherms of Th(IV) on alumina at approximately constant pH and three ionic strengths (0.05, 0.1, 0.5 mol/L KNO3) were determined. It was found that the pH values of aqueous solutions of both the Th(IV)-alumina and phosphate-alumina adsorption systems increase with increasing contact time, respectively. Adsorption of Th(IV) on alumina steeply increases with increasing pH from 1 to 4.5 and the adsorption edge consists of three regions. The phosphate added clearly enhances Th(IV) adsorption in the pH range 1-4. From the adsorption isotherms at approximately constant pH and three different ionic strengths, a reduced ionic strength effect was observed and is contradictory to the insensitive effect obtained from the adsorption edges on three oxides of Fe, Al, and Si at different ionic strengths. Compared with the adsorption edges at different ionic strengths, the adsorption isotherms at approximately constant pH and different ionic strengths are more advantageous in the investigation of ionic strength effect. The significantly positive effect of phosphate on Th(IV) adsorption onto alumina was attributed to strong surface binding of phosphate on alumina and the subsequent formation of ternary surface complexes involving Th(IV) and phosphate.  相似文献   

2.
Nano-sized magnetite impregnated charcoal granular activated carbon (nFe-GAC) was utilized for the removal of phosphate from aqueous solutions using a fixed bed column. The dynamic of the phosphate adsorption was analyzed using a new approach to the Thomas model based on a two-step differential sorption rate process. The initial adsorption was found to be external mass transfer controlled, while intra-particle diffusion was the predominant mechanism in the latter stage. Consequently, two kinetic coefficients were calculated for each breakthrough curve resulting in an excellent model prediction. By implementing this approach a transition point, at which diffusion becomes the predominant adsorption mechanism, can be accurately determined. The effect of varying parameters, such as feed flow rates, feed pH, initial phosphate concentrations and adsorbent bed height were examined and described using the modified Thomas model. Reaction rates increased with augmentation of the flow rates from 1 to 40 mL/min while the adsorption capacity and transition point decreased. Similar transition points were obtained for initial phosphate concentrations between 10 and 100 mg/L. The unique characteristics of the nFe-GAC were evident as it exhibited very high phosphate adsorption capacity, at a wide range of pH values (4–9) with negligible effect of competing ions and short critical bed depth.  相似文献   

3.
This study investigated the potential of MIEX resin as the adsorbent for the removal of phosphate from aqueous solutions. In our batch experiments, we studied the effect of some parameters on the removal of phosphate. It was observed that uptake of phosphate was mainly affected by initial phosphate concentration, adsorbent dosage, initial pH of solution, and coexistent anions. The adsorption equilibrium data at 288 K fitted well to Freundlich and Koble-Corrigan isotherm models. The kinetics studies displayed that the adsorption process followed the pseudo-second-order model. The diffusion studies showed that the intra-particle diffusion was not the only rate-controlling step and, the diffusion process of phosphate from solution to MIEX resin was controlled by film diffusion. The thermodynamics parameters were evaluated. The results showed that the adsorption process was spontaneous thermodynamically, endothermic, and entropy driven. These results have established a good potentiality for MIEX resin to be used as an adsorbent for the removal of phosphate from aqueous solutions. This work will deepen our understanding of the adsorptive characteristics of phosphate by MIEX resin and provide a better way to remove phosphate from wastewater.  相似文献   

4.
We report the synthesis of barium phosphate (BP) nano-flake and its adsorption behavior to methyl blue (MB) in aqueous solution. The as-obtained BP nano-flake revealed pure rhombohedral crystal structure. The adsorption capacity of MB onto BP reached 1500mgg(-1). The adsorption equilibrium results fitted well with the Freundlich isotherm model. The adsorption process took less than 30min to reach equilibrium. The adsorption kinetics was elucidated by the pseudo-second-order kinetic equation. It followed 2-stage and 3-stage intra-particle diffusion models for the low and high concentration of dye solutions, respectively. The adsorption of MB using the BP nano-flake was highly selective, compared with the adsorption of other dyes. The interactions between MB and BP were mainly the ionic interaction and hydrogen bonds, which were confirmed by the X-ray photoelectron spectroscopic results and the density functional theory calculations. The BP nano-flake revealed less than 5% decrease in adsorption amount when it was recycled and reused five times. The present work shows that the BP nano-flake is promising for practical applications in MB removal from aqueous solutions.  相似文献   

5.
We have performed a large number of batch sorption experiments of uranyl onto SiO2 and examined the effects of nitrate or ionic strength, phosphate, fulvic acid(FA), phthalic acid (PH), salicylic acid (SA), and catechol (CA) on the uranyl sorption onto SiO2. Three sorption edges and three sorption isotherms at ionic strengths 0.05, 0.1, and 0.5 mol/L KNO3 were used to investigate the effect of ionic strength or nitrate on the sorption and the Langmuir, Freundlich, and Dubinin-Radushkevich models are used to simulate the sorption isotherms, respectively. Five sorption edges in the presence of phosphate, FA, PH, SA, and CA were compared with that in the absence of complexing ligand. The results suggest that the effect of complexation of uranyl with nitrate on the uranyl sorption can be negligible and the sorption can be described Freundlich and D-R model very well. The positive effect of phosphate on the uranyl sorption was found, though the extent of effect was decreased with increasing pH. The positive effect and the negative effect of FA on the uranyl sorption were found at low pH and high pH ranges, respectively. The sorption edge of uranyl sorption remained unaffected in the presence of PH in the pH 2–10. In the presence of SA, the no effect and the negative effect on the uranyl sorption were, respectively, found at low pH and high pH ranges. The negative effect of CA on the uranyl sorption was found in the pH 2–10.  相似文献   

6.
Summary The sorption of Th(IV) onto TiO2 was studied by the batch technique as a function of pH and ionic strength at moderate concentration (10-4-10-5 mol/l) and in the presence and absence of phosphate. It was found that the sorption rate of Th(IV) was relatively slow, the sorption percent was abruptly increased from pH 2 to 4, and the sorption was decreased with increasing ionic strength as a whole. In the concentration range of Th(IV) from trace concentration to 1.4 . 10-4 mol/l and in the absence of phosphate, the sorption isotherms were roughly fitted the Freundlich equation at different ionic strengths and approximately constant pH. These sorption characteristics of Th(IV) onto TiO2 were compared with those of uranyl on the same sorbent. In addition, the positive effect of phosphate on the sorption of Th(IV) onto TiO2 was demonstrated obviously and can be attributed to strong surface binding of phosphate, and the subsequent formation of ternary surface complexes of Th(IV). The difference between the sorption characteristics of Th(IV) ions and uranyl ions onto TiO2 is discussed.  相似文献   

7.
The sorption of UO2 2+ and phosphate on silica were simultaneously studied. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the UO2 2+ sorption in the absence and the presence of phosphate was investigated. The effect of contact time between the solid phase and aqueous solution, pH and ionic strength on the phosphate sorption was investigated too. The isotherms of UO2 2+ and phosphate sorption at different pH values were determined. It was found that as compared with the sorption in the absence of phosphate, the sorption of UO2 2+ on silica in the presence of phosphate is increased at low pH and decreased at high pH; the abruptly increased with increasing pH in the pH range 3-6; the sorption is gradually decreased with increasing pH in the pH range 2-12; the sorption insensitive and the sorption of phosphate is sensitive to ionic strength.  相似文献   

8.
Adsorption of CTAB onto perlite samples from aqueous solutions   总被引:2,自引:0,他引:2  
In this study, the adsorption properties of unexpanded and expanded perlite samples in aqueous cetyltrimethylammonium bromide (CTAB) solutions were investigated as a function of ionic strength, pH, and temperature. It was found that the amount of cetyltrimethylammonium bromide adsorbed onto unexpanded perlite was greater than that onto expanded perlite. For both perlite samples, the sorption capacity increased with increasing ionic strength and pH and decreasing temperature. Experimental data were analyzed by Langmuir and Freundlich isotherms and it was found that the experimental data were correlated reasonably well by the Freundlich adsorption isotherm. Furthermore, the isotherm parameters (KF and n) were also calculated. The adsorption enthalpy was determined from experimental data at different temperatures. Results have shown that the interaction between the perlite surface and CTAB is a physical interaction, and the adsorption process is an exothermic one.  相似文献   

9.
Removal of phosphate by aluminum oxide hydroxide   总被引:17,自引:0,他引:17  
The development and manufacture of an adsorbent to remove phosphate ion for the prevention of eutrophication in lakes are very important. The characteristics of phosphate adsorption onto aluminum oxide hydroxide were investigated to estimate the adsorption isotherms, the rate of adsorption, and the selectivity of adsorption. Phosphate was easily adsorbed onto aluminum oxide hydroxide, because of the hydroxyl groups. The adsorption of phosphate onto aluminum oxide hydroxide was influenced by pH in solution: the amount adsorbed was greatest at pH 4, ranging with pH from 2 to 9. The optimum pH for phosphate removal by aluminum oxide hydroxide is 4. The selectivity of phosphate adsorption onto aluminum oxide hydroxide was evaluated based on the amount of phosphate ion adsorbed onto aluminum oxide hydroxide from several anion complex solutions. It is phosphate that aluminum oxide hydroxide can selectively adsorb. The selectivity of phosphate onto aluminum oxide hydroxide was about 7000 times that of chloride. This result indicated that the hydroxyl groups on aluminum oxide hydroxide have selective adsorptivity for phosphate and could be used for the removal of phosphate from seawater.  相似文献   

10.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

11.
利用大孔吸附树脂Amberlite XAD16及HZ816对红霉素的吸附动力学实验,研究了温度、初始浓度、溶液pH值及搅拌速度等因素对吸附过程的影响.结果表明,Amberlite XAD16及HZ816对红霉素的吸附速率符合一级吸附动力学方程及颗粒内扩散方程,过程受液膜扩散阻力及颗粒内扩散阻力共同影响.同时,表观吸附速率常数与颗粒内扩散速率常数均随着温度的升高而增大,随着初始浓度的增大而增大,随着溶液pH值增大而增大,随着搅拌速度加快而增大.  相似文献   

12.
采用水热法合成了硅酸镁锂(Laponite),然后利用十六烷基三甲基溴化铵(CTMAB)对其进行有机改性,研究了改性后的有机硅酸镁锂(CTMABL)对Cr(Ⅵ)的吸附特性.结果表明,改性后样品的比表面积和孔容积变小而平均孔径增大.CTMABL样品的d(001)值从改性前的1.23 nm增加到1.79 nm,表明CTMAB进入Laponite层间.随着溶液p H值的提高,CTMABL对Cr(Ⅵ)的吸附效率明显下降;p H8.5时,CTMABL颗粒表面电势为正,能够与Cr(Ⅵ)阴离子发生静电吸引从而提高吸附效率.随着固液比增加,对Cr(Ⅵ)的去除效率迅速上升,当固液比达到4 g/L后去除效率趋于稳定.离子强度对Cr(Ⅵ)吸附过程的影响不明显.CTMABL对Cr(Ⅵ)的吸附符合准二级动力学模型,吸附传质速率受膜扩散和颗粒内扩散过程共同影响.等温吸附过程符合Langmuir模型,热力学分析结果表明吸附过程是一个自发的吸热反应.综合分析认为表面配合作用是主要的吸附机制,同时静电引力在吸附过程中起到了促进作用.  相似文献   

13.

Herein, we used biochar pyrolyzed from rice straw to adsorb uranium (U) from aqueous solutions. The adsorption of U(VI) on biochar was strongly dependent on pH but independent on ionic strength. HA/FA enhanced the sorption at pH <6.8 while inhibited the sorption at pH >6.8. The sorption reached equilibrium within 3 h, which was not mediated by pH. The adsorption process was spontaneous and endothermic, and enhanced at higher temperature. However, the influence of temperature was negligible at low initial U(VI) concentrations. Therefore, biochar derived from rice straw may be a promising adsorbent for the removal of U(VI).

  相似文献   

14.
研究了壳聚糖(CS)对水溶液中的酸性艳橙GS(ABO)染料的吸附性能,考察了温度、pH值、壳聚糖分子量对吸附性能的影响.不同温度下的动力学数据分别采用拟一级、拟二级、内扩散方程进行关联;不同温度下壳聚糖对酸性艳橙GS的吸附平衡数据分别用1angmuir、Freundlich、Tempkin模型拟合.结果表明:该吸附过程...  相似文献   

15.
In this study, the adsorption of microcystin-LR onto iron oxide (maghemite) nanoparticles from water was examined. Factors influencing the sorption behavior included microcystin and maghemite concentration, pH, ionic strength, and the presence of natural organic matter. Adsorption of microcystin-LR was strongly affected by pH. The adsorption increased with decreasing pH, with a maximum adsorption around pH 3. Adsorption of microcystin-LR on maghemite was primarily attributed to electrostatic interactions, although hydrophobic interactions may also play a role. The extent of microcystin-LR adsorption onto maghemite increased with increasing ionic strength at pH 6.4, since salt ions screened the electrostatic repulsion between adsorbed microcystin molecules. Adsorption of microcystin-LR was not significantly affected by the presence of Suwannee River Fulvic acid (SRFA) below 2.5 mg/L. However, adsorption decreased at higher SRFA concentrations (2.5–25 mg/L) due to competitive adsorption between SRFA and microcystin-LR for limited sorption sites.  相似文献   

16.
Adsorption is an effective treatment process for removing phosphorus and thus controlling eutrophication. In this study, a clay composite material called Al–dolomite–montmorillonite (Al–DM) was prepared and characterized. Al–DM performed well with respect to phosphate removal, with its performance depending on the Al–DM loading, contact time, initial phosphorus concentration and initial solution pH. Adsorption mechanisms were investigated by conducting batch tests on phosphate adsorption using the Al–DM. The adsorption process fitted both the pseudo-second-order kinetics model and the intra-particle diffusion model. The Langmuir, Freundlich and BET models all adequately described the adsorption isotherm data. Thermodynamic studies showed that the adsorption process was endothermic and spontaneous in nature. Al–DM is an effective adsorbent for phosphate removal mainly due to its hierarchical porous structures as shown by characterization with SEM and EDS. Chemical changes occurring before and after adsorption in a water environment indicated that Al–DM had little negative effect on water quality.  相似文献   

17.
大孔吸附树脂对邻甲酚的吸附行为研究   总被引:14,自引:0,他引:14  
研究了大孔吸附树脂NDA—909吸附水溶液中邻甲酚的热力学特征,并与Amberlite XAD—4树脂进行了比较.通过吸附动力学实验,初步探讨了初始温度对吸附过程的影响。结果表明,NDA—909对邻甲酚的吸附符合Freundlich经验公式,表现为放热的物理吸附过程.此外吸附速率受颗粒内扩散和其它类型扩散的共同控制。  相似文献   

18.
The kaolinite sample was characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray powder diffraction, and was applied as adsorbent for the removal of radiocobalt ions from radioactive wastewater. The results demonstrated that the sorption of Co(II) was strongly dependent on pH and ionic strength at low pH values, and independent of pH and ionic strength at high pH values. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The sorption isotherms were well described by Langmuir, Freundlich and Dubinin–Radushkevich models. The thermodynamic parameters (i.e., ΔG°, ΔS°, ΔH°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on kaolinite was an endothermic and spontaneous process. The results of high sorption capacity of kaolinite suggested that the kaolinite sample was a suitable material for the preconcentration of Co(II) from large volumes of aqueous solutions and as backfill materials in nuclear waste management.  相似文献   

19.
Our understanding of metal ion adsorption to clay minerals has progressed significantly over the past several decades, and theories have been promulgated to describe and predict the impacts of pH, ionic strength, and background solution composition on the extent of adsorption. Studies evaluating the effects of ionic strength on adsorption typically employ a broad range of background electrolyte concentrations. Measurement of pH in these systems can be inaccurate when pH values are measured with liquid junction pH probes calibrated with standard buffers due to changes in the liquid junction potential between standard, low ionic strength (0.05 M) buffers and high ionic strength solutions (>0.1 M). The objective of this research is to determine the extent of the error in pH values measured at high ionic strength, and to develop an approach for accurately measuring pH over a range of ionic strengths using a combined pH electrode. To achieve this objective, the adsorption of cobalt (10(-5) M) onto gibbsite (10 g/L) from various electrolyte solutions (0.01-1 M) was studied. The pH measurements were determined from calibrations with standard buffers and ionic strength corrected buffer calibrations. The results show a significant effect of the aqueous solution background electrolyte anion and ionic strength on pH measurement. The 0.5 and 1 M ionic strength metal ion adsorption edges shifted to lower pH with increasing ionic strength when pH was calibrated with standard buffers whereas no shift in the adsorption edges was observed when calibrated with ionic strength corrected buffers. Therefore, to obtain an accurate pH measurement, pH calibration should contain the same electrolyte and ionic strength as the samples.  相似文献   

20.
采用水热法合成了硅酸镁锂(Laponite), 然后利用十六烷基三甲基溴化铵(CTMAB)对其进行有机改性, 研究了改性后的有机硅酸镁锂(CTMABL)对Cr(Ⅵ)的吸附特性. 结果表明, 改性后样品的比表面积和孔容积变小而平均孔径增大. CTMABL样品的d(001)值从改性前的1.23 nm增加到1.79 nm, 表明CTMAB进入Laponite层间. 随着溶液pH值的提高, CTMABL对Cr(Ⅵ)的吸附效率明显下降; pH<8.5时, CTMABL颗粒表面电势为正, 能够与Cr(Ⅵ)阴离子发生静电吸引从而提高吸附效率. 随着固液比增加, 对Cr(Ⅵ)的去除效率迅速上升, 当固液比达到4 g/L后去除效率趋于稳定. 离子强度对Cr(Ⅵ)吸附过程的影响不明显. CTMABL对Cr(Ⅵ)的吸附符合准二级动力学模型, 吸附传质速率受膜扩散和颗粒内扩散过程共同影响. 等温吸附过程符合Langmuir模型, 热力学分析结果表明吸附过程是一个自发的吸热反应. 综合分析认为表面配合作用是主要的吸附机制, 同时静电引力在吸附过程中起到了促进作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号