首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The osmium(VI) nitrido complex TpOs(N)Cl(2) [1, Tp = hydrotris(1-pyrazolyl)borate] reacts with triarylphosphines to afford the Os(IV) phosphiniminato complexes TpOs(NPAr(3))Cl(2) [Ar = p-tolyl (tol) (2a), phenyl (2b), p-CF(3)C(6)H(4) (2c)] in nearly quantitative yield. Protonation of 2a-c with 1 equiv of HOTf in MeCN occurs at the phosphiniminato nitrogen to give [TpOs(IV)(NHPAr(3))Cl(2)]OTf (3a-c) in 68-80% yield. Solutions of 2a-c in CH(2)Cl(2) react with excess H(2)O over 1 week to form the disproportionation products 1 (28%), TpOs(III)(NHPAr(3))Cl(2) (4a-c) (60%), and OPAr(3) (35%). Treatment of solutions of 3a-c with H(2)O also affords 1, 4a-c, and OPAr(3). X-ray structures of 2b, 3b, and 4b are presented. Cyclic voltammograms of compounds 2a-c exhibit Os(V)/Os(IV) and Os(IV)/Os(III) couples at approximately 0.3 and -1 V versus Cp(2)Fe(+/0). Protonation to give 3 makes reduction easier by approximately 1.2 V, so that these compounds show Os(IV)/Os(III) and Os(III)/Os(II) couples. In the hydrolytic disproportionation of 2a-c, labeling studies using (18)O-enriched O(2) and H(2)O establish water as the source of the oxygen atom in the OPAr(3) product. The conversions are accelerated by HOTf and inhibited by NaOD. The relative rates of hydrolytic disproportionation of 2a-c vary in the order tol > Ph > p-CF(3)C(6)H(4). The data indicate that protonation of the phosphiniminato nitrogen is required for hydrolysis. The mechanism of the hydrolytic disproportionation is compared to that of the related reaction of the osmium(IV) acetonitrile complex [TpOs(NCMe)Cl(2)](+).  相似文献   

2.
Four novel azo compounds were synthesized; o-phenylazo- (C(14)H(13)N(3)O(2)) (I), p-bromo-o-phenylazo- (C(14)H(13)BrN(3)O(2)) (II), p-methoxy-o-phenaylazo- (C(15)H(16)N(3)O(3)) (III) and p-nitro-o-phenylazo-p-acetamidophenol (C(14)H(13)N(4)O(4)) (IV). These compounds were carefully investigated using elemental analyses, UV-vis, FT-IR, (1)H NMR and mass spectra. Also, the effects of p-substituents such as bromo, methoxy and nitro groups on the mass fragmentation pathways of these dyes were studied using Hammet's effects. This research aimed chiefly to threw lights on the structures-stability relationship of four novel newly prepared azo derivatives of p-acetoamidophenol. The data obtained referred to the variation of mass fragmentation pathways with the variation of p-substituent of these dyes which can be used in industry for various dyeing purposes. This variation is also correlated and verified by molecular orbital calculations which were done on ionic forms of these dyes using semi empirical PM3 program. The biological activities of these dyes were also investigated and its structure relationship was correlated.  相似文献   

3.
Synthesis of novel 4,9-methanoundecafulvene [5-(4,9-methanocycloundeca-2',4',6',8',10'-pentaenylidene)pyrimidine-2(1H),4(3H),6(5H)-trione] derivatives 10a-c was accomplished. Their structural characteristics were investigated on the basis of the 1H and 13C NMR and UV-vis spectra. Upon treatment with DDQ, 10a-c underwent oxidative cyclization to give novel 11,13-disubstituted 3,8-methanocycloundeca[8,9-b]pyrimido[5,4-d]furan-12(11H),14(13H)-dionylium tetrafluoroborates 11a-c*BF4- in good yields. The spectroscopic properties of 11a-c*BF4- were studied, and the structural characterization of 11b*BF4- was performed by the X-ray crystal analysis. Cations 11a-c were very stable, and their pKR+ values were determined spectrophotometrically to be 8.3-8.9. The electrochemical reduction of 11a-c exhibited low reduction potentials at -0.43 to -0.45 (V vs Ag/AgNO3) upon cyclic voltammetry (CV). In a search for reactivity, reactions of 11a*BF4- with some nucleophiles, hydride and diethylamine, were carried out to clarify that the methano-bridge controls the nucleophilic attacks to occur with endo-selectivity. The photoinduced oxidation reactions of 11a*BF4- toward some amines under aerobic conditions were carried out to give the corresponding carbonyl compounds in more than 100% yield.  相似文献   

4.
A facile reaction of cis-trans-cis-RuCl(2)(RaaiR')(2) [RaaiR'=1-alkyl-2-(arylazo)imidazole, m-R-C(6)H(4)-NN-C(3)H(2)-NN-1-R', where R=H (a), OMe (b), NO(2) (c) and R'=Me (1), Et (2) and CH(2)Ph (3)] either with 2,2'-bipyridine (bpy) and AgNO(3) followed by NaClO(4) or [Ag(bpy)(2)](ClO(4)) in boiling acetone has isolated red-brown [Ru(bpy)(RaaiR')(2)](ClO(4))(2) (1a-c, 2a-c, 3a-c). The maximum molecular peak of [Ru(bpy)(OMeaaiMe)(2)](ClO(4))(2) (1b) is observed at m/z 888.01 (100%) in the FAB mass spectrum. IR spectra of the complexes show CN and NN stretching at 1590 and 1370cm(-1) which is red shifted by 40 and 90cm(-1) from the free ligand value supports Ru-azo nitrogen pi bonding interaction. The emission spectra in frozen glass (77K) are sharper and considerably more intense than the room temperature spectra. The (1)H NMR spectral measurements suggest methylene, -CH(2)-, in RaaiEt gives a complex AB type multiplet while in RaaiCH(2)Ph it shows AB type quartets. Considering two arylazoimidazole moieties there are 20 different carbon atoms in the molecule which gives a total of 20 different peaks in the (13)C NMR spectrum. In the (1)H-(1)H COSY spectrum of the present complexes, absence of any off-diagonal peaks extending from delta=14.12 and 9.55ppm confirm their assignment of no proton on N(1) and N(3), respectively. Contour peaks in the (1)H-(13)C HMQC spectrum in the present complexes, the absence of any contours at delta=147.12, 160.76, 155.67 and 157.68 ppm assign them to the C(2), C(6), C(8) and C(e and e') carbon atoms, respectively. Cyclic voltammogram shows Ru(III)/Ru(II) redox couple along with three successive ligand reductions. The plot of difference in potential of first oxidation and reduction versus energy of main MLCT band (nu(CT)) is linear. Electrochemical parametrisation of Ru(III)/Ru(II) redox couple determines ligand potential E(L)(L).  相似文献   

5.
美丽红豆杉二萜的研究 I: 美丽红豆杉素A,B和C的结构测定   总被引:2,自引:0,他引:2  
从美丽红豆杉(Taxus mairei)的茎皮中分离得三个新的二萜化合物, 其中美丽红豆杉素A(taxamairin A, 1)和美丽红豆杉素B(taxamairin B, 2)是含有 酮的三环二萜,它们的骨架尚未见文献报道; 美丽红豆杉素C(taxamairin C, 3)是含有半缩酮的四环二萜. 结构鉴定应用了高分辨的^1H NMR, ^1^3C NMR ^1H-^1H COSY和DFNOE等方法. 美丽红豆杉素A的结构还通过X射线单晶衍射予以证实.  相似文献   

6.
The dynamic behavior of [(C(6)H(7))Fe(CO)(3)]BF(4) (I) and [(C(7)H(9))Fe(CO)(3)]BF(4) (II) in the solid state has been investigated principally by NMR spectroscopy. High-resolution variable-temperature (1)H and (13)C NMR spectra indicate that both complexes have a solid state phase transition above which there is rapid reorientation of the cyclodienylium rings and fast exchange of the carbonyl groups. The transition occurs between 253 and 263 K for I and between 329 and 341 K for II. The presence of the phase transition is confirmed by differential scanning calorimetry (DSC). (57)Fe M?ssbauer spectroscopy supports the notion that complex I is highly mobile at room temperature, while II is relatively static. The activation energy for the cyclodienylium group rotation in the high-temperature phase of I is estimated from (1)H spin-lattice relaxation time measurements to be 17.5 kJ mol(-)(1). Static (13)C NMR measurements of the solid complexes in the high-temperature phase indicate that the (13)C chemical shift anisotropies are only 20-30 ppm. This is significantly less than that expected to result from motion of individual groups and thus suggests that rotation of the whole molecule is involved. A single-crystal X-ray structural determination of complex II, at 295 K, showed that the complex is tetragonal (space group P4(1), a = 10.610(1) ?, c = 21.761(3) ?, V = 2449.7(5) ?(3), rho(calc) = 1.734 g cm(-)(3)), with eight cycloheptadienyl cations and eight tetrafluoroborate anions per unit cell. In addition, powder X-ray diffraction studies of both I and II confirm that at low temperatures both complexes have a tetragonal unit cell, which transforms to a cubic unit cell above the phase transition. The powder patterns, recorded above the phase transition, support the proposal that the complexes are undergoing whole-molecule tumbling in their dynamic regimes.  相似文献   

7.
本文通过(+)-樟脑缩苄胺(I)与不同醛、酮的不对称加成, 经转氨合成了1,2-取代-2-氨基乙醇(2), 反应的非对映选择性经NMR测定为16-70%de.; 苏式、赤式异构体的含量比由HPLC法测定, 其值接近1, 由于立体位阻的原因加成反应发生在锂化物3的Re面。  相似文献   

8.
Cyanothioacetamide ( 1 ) reacted with acrylonitrile ( 2 ) to afford the corresponding 6-oxo-2-sulfanylpiperidine-3-carbonitrile ( 6 ), which oxidized to give compounds 7 and 8 under different conditions. Moreover, compound 6 was used as a starting material to synthesize 12a-c , 16a-d , 26a-c , 27a-c , and 30a-c via reactions with aromatic aldehydes 9a-c , diazonium chlorides 13a-d , and 3-arylpropennitrile derivatives 18a-i respectively. Considering the data of IR, 1 H NMR, mass spectra, elemental analyses, and theoretical calculations, all the structures of the newly synthesized heterocyclic compounds were elucidated.  相似文献   

9.
A [C,N] cyclometalated Ir complex, [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))benzoic acid-κC(3))(H(2)O)](2)SO(4) [1](2)·SO(4), was reduced by aliphatic alcohols to produce the corresponding hydride complex [Ir(III)(Cp*)(4-(1H-pyrazol-1-yl-κN(2))-benzoate-κC(3))H](-)4 at room temperature in a basic aqueous solution (pH 13.6). Formation of the hydride complex 4 was confirmed by (1)H and (13)C NMR, ESI MS, and UV-vis spectra. The [C,N] cyclometalated Ir-hydride complex 4 reacts with proton to generate a stoichiometric amount of hydrogen when the pH was decreased to pH 0.8 by the addition of diluted sulfuric acid. Photoirradiation (λ > 330 nm) of an aqueous solution of the [C,N] cyclometalated Ir-hydride complex 4 resulted in the quantitative conversion to a unique [C,C] cyclometalated Ir-hydride complex 5 with no byproduct. The complex 5 catalyzed hydrogen evolution from ethanol in a basic aqueous solution (pH 11.9) under ambient conditions. The 1,4-selective catalytic hydrogenation of β-nicotinamide adenine dinucleotide (NAD(+)) by ethanol was also made possible by the complex 1 to produce 1,4-dihydro-β-nicotinamide adenine dinucleotide (1,4-NADH) at room temperature. The overall catalytic mechanism of hydrogenation of NAD(+), accompanied by the oxidation of ethanol, was revealed on the basis of the kinetic analysis and detection of the reaction intermediates.  相似文献   

10.
Carbon monoxide readily binds to heme and copper proteins, acting as a competitive inhibitor of dioxygen. As such, CO serves as a probe of protein metal active sites. In our ongoing efforts to mimic the active site of cytochrome c oxidase, reactivity toward carbon monoxide offers a unique opportunity to gain insight into the binding and spectroscopic characteristics of synthetic model compounds. In this paper, we report the synthesis and characterization of CO-adducts of ((5/6)L)Fe(II), [((5/6)L)Fe(II)...Cu(I)](B(C(6)F(5))(4)), and [(TMPA)Cu(I)(CH(3)CN)](B(C(6)F(5))(4)), where TMPA = tris(2-pyridylmethyl)amine and (5/6)L = a tetraarylporphyrinate tethered in either the 5-position ((5)L) or 6-position ((6)L) to a TMPA copper binding moiety. Reaction of ((5/6)L)Fe(II) [in THF (293 K): UV-vis 424 (Soret), 543-544 nm; (1)H NMR delta(pyrrole) 52-59 ppm (4 peaks); (2)H NMR (from ((5)L-d(8))Fe(II)) delta(pyrrole) 53.3, 54.5, 55.8, 56.4 ppm] with CO in solution at RT yielded ((5/6)L)Fe(II)-CO [in THF (293 K): UV-vis 413-414 (Soret), 532-533 nm; IR nu(CO)(Fe) 1976-1978 cm(-1); (1)H NMR delta(pyrrole) 8.8 ppm; (2)H NMR (from ((5)L-d(8))Fe(II)-CO) delta(pyrrole) 8.9 ppm; (13)C NMR delta((CO)Fe) 206.8-207.1 ppm (2 peaks)]. Experiments repeated in acetonitrile, acetone, toluene, and dichloromethane showed similar spectroscopic data. Binding of CO resulted in a change from five-coordinate, high-spin Fe(II) to six-coordinate, low-spin Fe(II), as evidenced by the upfield shift of the pyrrole resonances to the diamagnetic region ((1)H and (2)H NMR spectra). Addition of CO to [((5/6)L)Fe(II)...Cu(I)](B(C(6)F(5))(4)) [in THF (293 K): UV-vis ((6)L only) 424 (Soret), 546 nm; (1)H NMR delta(pyrrole) 54-59 ppm (multiple peaks); (2)H NMR (from [((5)L-d(8))Fe(II).Cu(I)](B(C(6)F(5))(4))) delta(pyrrole) 53.4 ppm (br)] gave the bis-carbonyl adduct [((5/6)L)Fe(II)-CO...Cu(I)-CO](B(C(6)F(5))(4)) [in THF (293 K): UV-vis ((6)L only) 413 (Soret), 532 nm; IR nu(CO)(Fe) 1971-1973 cm(-1), nu(CO)(Cu) 2091-2093 cm(-1), approximately 2070(sh) cm(-1); (1)H NMR delta(pyrrole) 8.7-8.9 ppm; (2)H NMR (from [((5)L-d(8))Fe(II)-CO...Cu(I)-CO](B(C(6)F(5))(4))) delta(pyrrole) 8.9 ppm; (13)C NMR delta((CO)Fe) 206.8-208.1 ppm (2 peaks), delta((CO)Cu) 172.4 ((5)L), 178.2 ((6)L) ppm]. Experiments in acetonitrile, acetone, and toluene exhibited spectral features similar to those reported. The [((5/6)L)Fe(II)-CO.Cu(I)-CO](B(C(6)F(5))(4)) compounds yielded (CO)(Fe) spectra analogous to those seen for ((5/6)L)Fe(II)-CO and (CO)(Cu) spectra similar to those seen for [(TMPA)Cu(I)-CO](B(C(6)F(5))(4)) [in THF (293 K): IR nu(CO)(Cu) 2091 cm(-1), approximately 2070(sh) cm(-1); (13)C NMR delta((CO)Cu) 180.3 ppm]. Additional IR studies were performed in which the [((5)L)Fe(II)-CO...Cu(I)-CO](B(C(6)F(5))(4)) in solution was bubbled with argon in an attempt to generate the iron-only mono-carbonyl [((5)L)Fe(II)-CO.Cu(I)](B(C(6)F(5))(4)) species; in coordinating solvent or with axial base present, decreases in characteristic IR-band intensities revealed complete loss of CO from copper and variable loss of CO from the heme.  相似文献   

11.
The reaction of mononuclear ruthenium precursor [Ru(II)(acac)(2)(CH(3)CN)(2)] (acac = acetylacetonate) with the thiouracil ligand (2-thiouracil, H(2)L(1) or 6-methyl -2-thiouracil, H(2)L(2)) in the presence of NEt(3) as base in ethanol solvent afforded a trinuclear triangular complex Ru(3)(O,O-acetylacetonate)(3)(mu-O,O,gamma-C-acetylacetonate)(3)(mu(3)-sulfido) (1). In 1, each ruthenium center is linked to one usual O,O-bonded terminal acetylacetonate molecule whereas the other three acetylacetonate units act as bridging functions: each bridges two adjacent ruthenium ions through the terminal O,O-donor centers at one end and via the gamma-carbon center at the other end. Moreover, there is a mu(3)-sulfido bridging in the center of the complex unit, which essentially resulted via the selective cleavage of the carbon-sulfur bond of the thiouracil ligand. In diamagnetic complex 1, the ruthenium ions are in mixed valent Ru(III)Ru(III)Ru(II) state, where the paramagnetic ruthenium(III) ions are antiferromagnetically coupled. The single crystal X-ray structure of 1 showed two crystallographically independent C(3)-symmetric molecules, Ru(3)(O,O-acetylacetonate)(3)(mu-O,O,gamma-C-acetylacetonate)(3)(mu(3)-S) (1), in the asymmetric unit. Bond distances of both crystallographically independent molecules are almost identical, but there are some significant differences in bond angles (up to 6 degrees ) and interplanar angles (up to 8 degrees ). Each ruthenium atom exhibits a distorted octahedral environment formed by four oxygen atoms, two from each of the terminal and bridging acetylacetonate units, one gamma-carbon of an adjacent acetylacetonate ligand, and the sulfur atom in the center of the complex. In agreement with the expected 3-fold symmetry of the complex molecule, the (1)H and (13)C NMR spectra of 1 in CDCl(3) displayed signals corresponding to two types of ligand units. In dichloromethane solvent, 1 exhibited three metal center based successive quasireversible redox processes, Ru(III)Ru(III)Ru(III)-Ru(III)Ru(III)Ru(II) (couple I, 0.43 V vs SCE); Ru(III)Ru(III)Ru(IV)-Ru(III)Ru(III)Ru(III) (couple II, 1.12 V); and Ru(III)Ru(III)Ru(II)-Ru(III)Ru(II)Ru(II) (couple III, -1.21 V). However, in acetonitrile solvent, in addition to the three described couples [(couple I), 0.34 V; (couple II), 1.0 V; (couple III), -1.0], one irreversible oxidative response (Ru(III)Ru(III)Ru(IV) --> Ru(III)Ru(IV)Ru(IV) or oxidation of the coordinated sulfide center) appeared at E(pa), 1.50 V. The large differences in potentials between the successive couples are indicative of strong coupling between the ruthenium ions in the mixed-valent states. Compound 1 exhibited a moderately strong charge-transfer (CT) transition at 654 nm and multiple ligand based intense transitions in the UV region. In the Ru(III)Ru(III)Ru(III) (1(+)) state, the CT band was slightly blue shifted to 644 nm; however, the CT band was further blue shifted to 520 nm on two-electron oxidation to the Ru(III)Ru(III)Ru(IV) (1(2+)) state with a reduction in intensity.  相似文献   

12.
(1)H, (13)C, (195)Pt and (15)N NMR studies of platinide(II) (M = Pd, Pt) chloride complexes with such alkyl and aryl derivatives of 2,2'-bipyridine and 1,10-phenanthroline as LL = 6,6'-dimethyl-bpy, 5,5'-dimethyl-bpy, 4,4'-di-tert-butyl-bpy, 2,9-dimethyl-phen, 2,9-dimethyl-4,7-diphenyl-phen, 3,4,7,8-tetramethyl-phen, having the general [M(LL)Cl(2)] formula were performed and the respective chemical shifts (δ(1H), δ(13C), δ(195Pt), δ(15N)) reported. (1)H high-frequency coordination shifts (Δ(coord)(1H) = δ(complex)(1H)-δ(ligand)(1H)) mostly pronounced for nitrogen-adjacent protons and methyl groups in the nearest adjacency of nitrogen, as well as (15)N low-frequency coordination shifts (Δ(coord)(15H) = δ(complex)(15H)-δ(ligand)(15H)) were discussed in relation to the molecular structures.  相似文献   

13.
Addition of the new phosphonium carborane salts [HPR(3)][closo-CB(11)H(6)X(6)] (R = (i)Pr, Cy, Cyp; X = H 1a-c, X = Br 2a-c; Cy = C(6)H(11), Cyp = C(5)H(9)) to [Rh(nbd)(mu-OMe)](2) under a H(2) atmosphere gives the complexes Rh(PR(3))H(2)(closo-CB(11)H(12)) 3 (R = (i)Pr 3a, Cy 3b, Cyp 3c) and Rh(PR(3))H(2)(closo-CB(11)H(6)Br(6)) 4 (R = (i)Pr 4a, Cy 4b, Cyp 4c). These complexes have been characterised spectroscopically, and for 4b by single crystal X-ray crystallography. These data show that the {Rh(PR(3))H(2)}(+) fragment is interacting with the lower hemisphere of the [closo-CB(11)H(6)X(6)](-) anion on the NMR timescale, through three Rh-H-B or Rh-Br interactions for complexes 3 and 4 respectively. The metal fragment is fluxional over the lower surface of the cage anion, and mechanisms for this process are discussed. Complexes 3a-c are only stable under an atmosphere of H(2). Removing this, or placing under a vacuum, results in H(2) loss and the formation of the dimer species Rh(2)(PR(3))(2)(closo-CB(11)H(12))(2) 5a (R = (i)Pr), 5b (R = Cy), 5c (R = Cyp). These dimers have been characterised spectroscopically and for 5b by X-ray diffraction. The solid state structure shows a dimer with two closely associated carborane monoanions surrounding a [Rh(2)(PCy(3))(2)](2+) core. One carborane interacts with the metal core through three Rh-H-B bonds, while the other interacts through two Rh-H-B bonds and a direct Rh-B link. The electronic structure of this molecule is best described as having a dative Rh(I) --> Rh(III), d(8)--> d(6), interaction and a formal electron count of 16 and 18 electrons for the two rhodium centres respectively. Addition of H(2) to complexes 5a-c regenerate 3a-c. Addition of alkene (ethene or 1-hexene) to 5a-c or 3a-c results in dehydrogenative borylation, with 1, 2, and 3-B-vinyl substituted cages observed by ESI-MS: [closo-(RHC[double bond, length as m-dash]CH)(x)CB(11)H(12-x)](-)x = 1-3, R = H, C(4)H(9). Addition of H(2) to this mixture converts the B-vinyl groups to B-ethyl; while sequential addition of 4 cycles of ethene (excess) and H(2) to CH(2)Cl(2) solutions of 5a-c results in multiple substitution of the cage (as measured by ESI-MS), with an approximately Gaussian distribution between 3 and 9 substitutions. Compositionally pure material was not obtained. Complexes 4a-c do not lose H(2). Addition of tert-butylethene (tbe) to 4a gives the new complex Rh(P(i)Pr(3))(eta(2)-H(2)C=CH(t)Bu)(closo-CB(11)H(6)Br(6)) 6, characterised spectroscopically and by X-ray diffraction, which show coordination of the alkene ligand and bidentate coordination of the [closo-CB(11)H(6)Br(6)](-) anion. By contrast, addition of tbe to 4b or 4c results in transfer dehydrogenation to give the rhodium complexes Rh{PCy(2)(eta(2)-C(6)H(9))}(closo-CB(11)H(6)Br(6)) 7 and Rh{PCyp(2)(eta(2)-C(5)H(7))}(closo-CB(11)H(6)Br(6)) 9, which contain phosphine-alkene ligands. Complex has been characterised crystallographically.  相似文献   

14.
Abstract— The 1(N)-(2,6-dichlorobenzyl)-1,4-dihydronicotinamide (I), N-methyl- and N,N-dimethyl-1(N)-(2,6-dichlorobenzyl)-1,4-dihydronicotinamide (II and III), respectively), and 1(N)-(2,6-dichloro-benzyl)-2-aminomethyl-1,4-dihydronicotinic acid lactame (IV) were synthesized as model compounds for natural coenzymes, and systematically studied by 1H NMR, UV/V1S absorption and fluorescence spectroscopy. The absorption at ∼ 340 nm argues for an effective conjugation between dihydropyridine and carboxamide π-system, and rules out any severely twisted conformation. For the natural coenzymes NADH and NMNH, as well as for I and II (with no or only one N-amide substituent), 1H NMR definitively establishes a transoid conformation in solution, with the carbonyl O close to 2-H of the dihydropyridine ring. N,N-dimethyl substitution effectively inverts the carboxamide orientation into the cisoid form. The 1H NMR data (as well as molar extinctions) for the fused-ring derivatives IV and V, with a fixed cisoid and transoid structure, respectively, provide final proof for the conformational assignment.
Absorption maxima are shifted to lower energies with increasing solvent polarity. In solvents which can act as hydrogen bond acceptors to the carboxamide N-H, absorption shows a general blue-shift of ∼ 10 nm. H-bond donor solvents do not affect absorption maxima but enhance molar extinction. Fluorescence maxima show a similar dependence on solvent polarity but no specific hydrogen-bonding effect. Fluorescence quantum yields appear increased tenfold in solvents donating H-bonds to the carboxamide C=O group. These results are interpreted in terms of the vinylogous amide resonance between C=O function and ring-N lone pair being the electronic interaction dominating in the ground state of dihydronicotinamides.  相似文献   

15.
A series of zinc complexes of the general formula {[ZnCl(ArN=C(An)-C(An)=NAr)](+)}(2)[Zn(2)Cl(6)](2-) (where Ar = 2-(1-benzyl-1H-1,2,3-triazol-4-yl)phenyl 2a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)phenyl 2b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)phenyl 2c; An = acenaphthene backbone) were prepared by the condensation of acenaphthenequinone with the corresponding o-triazolyl-substituted anilines (2-(1-benzyl-1H-1,2,3-triazol-4-yl)aniline 1a, 2-(1-(1-phenylethyl)-1H-1,2,3-triazol-4-yl)aniline 1b, 2-(1-phenyl-1H-1,2,3-triazol-4-yl)aniline 1c) which were formed by the copper(I)-catalyzed Huisgen[3+2] dipolar cycloaddition between 2-ethynylaniline and the corresponding azides in high yields, using anhydrous ZnCl(2) as the metal template, in boiling glacial acetic acid. Zinc complexes of the type [ZnCl(ArN=C(An)-C(An)=NAr)](+)[ZnCl(3)(NCCH(3))](-) (4a-c) were synthesized by crystallisation of the corresponding complexes 2a-c in acetonitrile, at -20 °C. After removal of zinc dichloride from complexes 2a-c by the addition of potassium oxalate, in dichloromethane, the tetradentate N,N,N,N-chelating α-diimine ligands of the type ArN=C(An)-C(An)=NAr (5a-c) were obtained. The new ligand precursors and zinc complexes were characterised by elemental analysis, (1)H and (13)C{(1)H} NMR spectroscopy, two-dimensional NMR spectroscopy, and X-ray diffraction. Reaction of the ligand precursors 5a-c with [NiBr(2)(DME)], in dichloromethane, gave nickel complexes of the type [NiBr(2)(ArN=C(An)-C(An)=NAr)] (6a-c). The results of single crystal X-ray diffraction characterisation and magnetic susceptibility measurements demonstrated that nickel complexes 6a-c possess octahedral geometries around the nickel atoms with variable configurations, the Br atoms of which can be ionized when dissolved in methanol. In preliminary catalytic tests, complexes 6a-c revealed to be active as catalysts for the polymerisation of norbornene and styrene, when activated by cocatalyst MAO. The characterisation of the polymers by (1)H and (13)C{(1)H} NMR spectroscopy, gel permeation chromatography/size-exclusion chromatography (GPC/SEC) revealed that these polymers were formed by a coordination addition mechanism.  相似文献   

16.
N-substituted-2-aminomethyl-6-phenylpyridines 2a-c have been easily prepared from commercially available 6-bromo-2-picolinaldehyde in two steps. Reaction of 2a-c with PdCl(2) in toluene in the presence of triethylamine gave the CNN pincer Pd(II) complexes 3a-c in 18-28% yields. The CNN pincer Ru(II) complex 5 containing a Ru-NHR functionality could be obtained in a 71% yield by treatment of 2c with a Ru(II) precursor instead of PdCl(2). Additionally, the related CNN pincer Ru(II) complex 7 containing a Ru-NH(2) functionality has been synthesized by the reaction of 2-aminomethyl-6-phenylpyridine with the same Ru(II) precursor in a 68% yield. All the new compounds were characterized by elemental analysis (MS for ligands), (1)H, (13)C NMR, (31)P{(1)H} NMR (for Ru complexes) and IR spectra. Molecular structures of Pd complex 3c as well as Ru complexes 5 and 7 have been determined by X-ray single-crystal diffraction. The obtained Pd complexes 3a-c were effective catalysts for the allylation of aldehydes as well as for three-component allylation of aldehydes, arylamines and allyltributyltin and their activity was found to be much higher than a related NCN Pd(II) pincer in the allylation of aldehyde. On the other hand, the two new CNN pincer Ru(II) complexes 5 and 7 displayed excellent catalytic activity in the transfer hydrogenation of ketones in refluxing 2-propanol with the latter being much more active. The final TOF values were up to 4510 h(-1) with 0.01 mol% of 5 and 220,800 h(-1) with 0.005 mol% of 7, respectively.  相似文献   

17.
Reactions of Al(III) and Ga(III) with citric acid in aqueous solutions, yielded the complexes (NH(4))(5)[M(C(6)H(4)O(7))(2)].2H(2)O (M(III) = Al (1), Ga (2)) at alkaline pH, and the complexes (Cat)(4)[M(C(6)H(5)O(7))(C(6)H(4)O(7))].nH(2)O (M(III) = Al (3), Ga (4), Cat. = NH(4)(+), n = 3; M(III) = Al (5), Ga (6), Cat. = K(+), n = 4) at acidic pH. All compounds were characterized by spectroscopic (FT-IR, (1)H, (13)C, and (27)Al NMR, (13)C-MAS NMR) and X-ray techniques. Complex 1 crystallizes in space group P1, with a = 9.638(5) A, b = 9.715(5) A, c = 7.237(4) A, alpha = 90.96(1) degrees, beta = 105.72(1) degrees, gamma = 119.74(1) degrees, V = 557.1(3) A(3), and Z = 1. Complex 2 crystallizes in space group P1, with a = 9.659(6) A, b = 9.762(7) A, c = 7.258(5) A, alpha = 90.95(2) degrees, beta = 105.86(2) degrees, gamma = 119.28(1) degrees, V = 564.9(7) A(3), and Z = 1. Complex 3 crystallizes in space group I2/a, with a = 19.347(3) A, b = 9.857(1) A, c = 23.412(4) A, beta = 100.549(5) degrees, V = 4389(1) A(3), and Z = 8. Complex 4 crystallizes in space group I2/a, with a = 19.275(1) A, b = 9.9697(6) A, c = 23.476(1) A, beta = 100.694(2) degrees, V = 4432.8(5) A(3), and Z = 8. Complex 5 crystallizes in space group P1, with a = 7.316(1) A, b = 9.454(2) A, c = 9.569(2) A, alpha = 64.218(4) degrees, beta = 69.872(3) degrees, gamma = 69.985(4) degrees, V = 544.9(2) A(3), and Z = 1. Complex 6 crystallizes in space group P1, with a = 7.3242(2) A, b = 9.4363(5) A, c = 9.6435(5) A, alpha = 63.751(2) degrees, beta = 70.091(2) degrees, gamma = 69.941(2) degrees, V = 547.22(4) A(3), and Z = 1. The crystal structures of 1-6 reveal mononuclear octahedral complexes of Al(III) (or Ga(III)) bound to two citrates. Solution NMR, on both 4- and 5- species, reveals rapid intramolecular exchange of the bound and unbound terminal carboxylates. Upon dissolution in water, the complexes, through a complicated reaction cascade, transform to oligonuclear 1:1 species that, in agreement with previous studies, represent the thermodynamically stable state in solution. The data provide, for the first time, structural details of low MW, mononuclear complexes of Al(III) (or Ga(III)) with citrate that are dictated, among other factors, by pH. The properties of 1-6 may provide clues relevant to their biological association with humans.  相似文献   

18.
Derivatives of CpCo(2,3-Et(2)C(2)B(4)H(4)) containing substituents at the apex boron atom [B(7)], the first examples of apically functionalized small metallacarborane clusters, have been prepared in good yield via boron insertion into the nido-CpCo(2,3-Et(2)C(2)B(3)H(3))(2-) dianion. Reaction of this substrate with BX(3) (X = Cl, Br, I) or PhBCl(2) in toluene at room temperature gave the corresponding CpCo(2,3-Et(2)C(2)B(4)H(3)-7-X) derivatives (2a-c and 3 in which X = Cl, Br, I, and Ph, respectively), all of which were isolated via column chromatography as air-stable yellow solids and characterized via (1)H, (11)B, and (13)C NMR, infrared, UV-visible, and mass spectra. Treatment of the same dianion with 1,4-(Br(2)B)(2)C(6)H(4) afforded air-stable orange crystalline [CpCo(2,3-Et(2)C(2)B(4)H(3)-7)](2)C(6)H(4) (4). The structure of this compound was defined via spectroscopy and X-ray crystallography as a bis(cobaltacarborane) complex linked at the apex borons via a 1,4-phenylene bridge. Crystal data for 4: space group Pbca; a = 15.056(7) ?, b = 21.612 (8) ?, c = 11.641 (3) ?; Z = 4; R = 0.045 for 1582 independent reflections having I > 3sigma(I).  相似文献   

19.
Coordination of sigma-aryl carbanions by chloroiron(II) 5,20-ditolyl-10,15-diphenyl-21-oxaporphyrin (ODTDPP)Fe(II)Cl has been followed by (1)H NMR spectroscopy. Addition of pentafluorophenyl Grignard reagent (C(6)F(5))MgBr to the toluene solution of (ODTDPP)Fe(II)Cl in the absence of dioxygen at 205 K resulted in the formation of the high-spin (ODTDPP)Fe(II)(C(6)F(5)). The titration of (ODTDPP)Fe(II)Cl with a solution of (C(6)H(5))MgBr carried at 205 K yields a rare six-coordinate species which binds two sigma-aryl ligands [(ODTDPP)Fe(II)(C(6)H(5))(2)](-). Warming of the [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) solution above 270 K results in the decomposition to mono-sigma-phenyliron species (ODTDPP)Fe(II)(C(6)H(5)). Controlled oxidation of [(ODTDPP)Fe(II)(C(6)H(5))(2)](-) with Br(2) affords (ODTDPP)Fe(III)(C(6)H(5))Br, which demonstrates a typical (1)H NMR pattern of low-spin sigma-aryl iron(III) porphyrin. The considered oxidation mechanism involves the (ODTDPP)Fe(III)(C(6)H(5))(2) species, which is readily reduced to the iron(I) 21-oxaporphyrin, followed by oxidation with Br(2) and replacement of one bromide anion by aryl substituent. The (1)H NMR spectra of paramagnetic iron complexes have been examined in detail. Functional group assignments have been made with the use of selective deuteration. The peculiar (1)H NMR spectral features of [(ODTDPP)Fe(II)(p-CH(3)C(6)H(4))(2)](-) (sigma-p-tolyl: ortho, 30.8; meta, 53.6; para-CH(3), 42.1; furan: -16.0; beta-H pyrrole: -27.5, -34.3, -41.8 ppm, at 205 K) are without a parallel to any iron(II) porphyrin or heteroporphyrin and indicate a profound alteration of the electronic structure of iron(II) porphyrin upon the coordination of two sigma-aryls.  相似文献   

20.
2-Phenyl-1, 2, 3-triazole-4-formylhydrazine (2) was prepared by hydrazinolysis of the corresponding ester 1. Reaction of 2 with CS2/KOH gave the oxadiazole derivatives (3) which via, Mannich reaction with different dialkyl amines furnished 3-N, N-dialkyl derivatives (4a-c). Also, condensation of 2 with appropriate aromatic acid in POCl3 yielded oxadiazole derivatives (5a-c), or with aldehydes and ketones afforded hydrazones (6a-c). Cyclization of (6a-c) with acetic anhydride gave the desired dihydroxadiazole derivatives (7a-c). On the other hand, reaction of dithiocarbazate (8) with hydrazine hydrate gave the corresponding triazole derivative (9) which on treatment with carboxylic acids in refluxing POCl3 yielded s-triazole[3,4-b]-1, 3, 4-thiadiazole derivatives (10a-b). The structures of all the above compounds were confirmed by means of IR, 1H NMR, MS and elemental analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号