首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last few years, our research group has focused on the design and development of plasmid DNA (pDNA) based systems as devices to be used therapeutically in the biomedical field. Biocompatible macro and micro plasmid DNA gels were prepared by a cross-linking reaction. For the first time, the pDNA gels have been investigated with respect to their swelling in aqueous solution containing different additives. Furthermore, we clarified the fundamental and basic aspects of the solute release mechanism from pDNA hydrogels and the significance of this information is enormous as a basic tool for the formulation of pDNA carriers for drug/gene delivery applications. The co-delivery of a specific gene and anticancer drugs, combining chemical and gene therapies in the treatment of cancer was the main challenge of our research. Significant progresses have been made with a new p53 encoding pDNA microgel that is suitable for the loading and release of pDNA and doxorubicin. This represents a strong valuable finding in the strategic development of systems to improve cancer cure through the synergetic effect of chemical and gene therapy.  相似文献   

2.
在制备聚醚酐凝胶的基础上, 用两种不同的可光交联疏水性单体与聚醚酐大分子单体在紫外光引发下制备三维交联凝胶, 使得凝胶的溶胀性能和亲-疏水性能发生变化, 从而影响凝胶与难溶性药物的相容性; 选用吲哚美辛为模型药物, 通过后包合法将其包载于凝胶网络中, X射线衍射(XRD)检测结果表明, 药物能以分子或无定形态分散于其中, 优化后的凝胶可得到更高的载药量和包封率, 能有效地提高疏水性药物的溶出度, 且药物体外释放速率与单纯聚醚酐凝胶相比, 被有效延缓, 更适于临床应用.  相似文献   

3.
Yu H  Lu J  Xiao C 《Macromolecular bioscience》2007,7(9-10):1100-1111
In this paper, a novel composite hydrogel was prepared by the use of dialdehyde konjac glucomannan (DAK) as macromolecular cross-linking agent for chitosan (CS). This biocompatible material cross-links and gels in minutes. The structure and morphology were characterized by various analyses. The results indicate that the hydrogels formed through the Schiff-base reaction between the amino groups of CS chains and the aldehyde groups of DAK. The cross-link density (rho(x)) increases with the enhancement of DAK content in hydrogels, while equilibrium swelling ratio (SR) and the average molecular weight between cross-links (Mc) value decrease. Drug release was evaluated by varying the pH of the release medium, reversed dependence of release rate on the equilibrium SR of hydrogel indicated that drug release may be impeded by the association of drug with the polymer. Importantly, this process offers an entirely new window of materials preparation when compared with the traditional preparation of CS-based hydrogels with small molecules cross-linking agent.  相似文献   

4.
Nanocomposite biocompatible hydrogels (NCHG) were synthesised as model systems for in situ cured potentially local drug delivery devices for curing periodontal infections. The composite consists of the following components: nanoparticles (NPs), matrix gel, and chlorhexidine (CHX) as antibacterial drug. The NPs were obtained by free radical initiated copolymerization of the monomers, 2-hydroxyethyl methacrylate (HEMA) and polyethyleneglycol dimethacrylate (PEGDMA), in aqueous solution. The same monomers were used to prepare crosslinked matrices by photopolymerization. NCHGs were obtained by mixing NPs, monomers, and drug in an aqueous solution then crosslinked by photopolymerization. Mechanical properties, swelling behavior, and the kinetics of drug release have been investigated. It was found that compression strength values increased with increasing ratio of the crosslinker PEGDMA. Incorporation of NPs into the matrix resulted similar compression strength as the matrix hydrogel. The hydrated NCHGs swelled more slowly but admitted more water. The drug was incorporated in NPs by swelling in CHX aqueous solution or added to the solution of monomer mixture followed by photopolymerization. Studies of release kinetics revealed that on average 60% of the loaded drug was released. The most rapid release was observed over a 24 h period for matrix gels with low crosslinking density. For NCHGs, the release period exceeded 48 h. An unexpected result was observed for NCHGs without drug in the NPs. In this case, increasing release was observed for the first 24 h. Thereafter, however, the apparent quantity of detectable drug decreased dramatically.  相似文献   

5.
Synthesis of hydrogel at mild conditions is considered one most important challenge, especially if the hydrogel will be used for hosting bioactive materials or drugs. The procedure of hydrogel preparation should have no effect on the properties of the hosted materials. Hyaluronic acid (HA) was modified by adding dialdehyde groups to its structure to facilitate formation of hydrogel at very mild conditions. Dialdehyde HA (DHA) was prepared through oxidation of HA using sodium metaperiodate as oxidizing agent. The prepared DHA was characterized by Fourier‐transform infrared (FTIR) spectroscopy and X‐ray diffraction (XRD) and aldehyde content. A hydrogel was prepared using different chitosan/DHA molar ratio and fixed amount of glutaraldehyde at 25°C. The prepared hydrogel has tunable properties and pores size depending on the chitosan/DHA molar ratio. Sodium diclofenac was loaded on the hydrogel as a model drug. The hydrogel was characterized by FTIR spectroscopy, swelling rate, gel fraction, drug release profile, and cytotoxicity. The results obtained indicated that the properties of the prepared hydrogel, including gelling time, gel fraction, swelling, pores size, and drug release profile are highly tuned depending on the chitosan/DHA molar ratio. The drug loading efficiency was in the range of 70% to 85%. The cytotoxicity results reveal that the prepared hydrogel has a very low toxicity in presence and absence of sodium diclofenac.  相似文献   

6.
The aim of this work is to develop a novel biocompatible drug delivery carrier and tissue engineering scaffold with the ability of controlled drug release and also tissue regeneration. We have synthesized N-(2-hydroxypropyl)methacrylamide and 2-(dimethylamino)ethyl methacrylate copolymer-based hydrogels loaded with doxorubicin and tested in vitro. The manifestation of temperature sensitivity is noted with a sharp decrease or increase in hydrogel optical transparency that happens with the temperature exceeding a critical transition value. The drug release profile exhibited pH-sensitive behavior of the hydrogel. The hydrolytic degradation of gel and in vitro studies of polymer–doxorubicin conjugate and doxorubicin release from hydrogel matrix indicated that hydrogels were stable under acidic conditions (in buffers at pH 4.64 and 6.65). In both drug forms, polymer–doxorubicin conjugate and free doxorubicin could be released from the hydrogel scaffold at a rate depending directly on either the rate of drug diffusion from the hydrogel or rate of hydrogel degradation or at rate controlled by a combination of the both processes. In vitro analysis showed homogenous cell attachment and proliferation on synthesized hydrogel matrix. In vivo implantation demonstrated integration of the gel with the surrounding tissue of mice within 2 weeks and prominent neo-angiogenesis observed in the following weeks. This multifunctional hydrogels can easily overcome biological hurdles in the in vivo conditions where the pH range changes drastically and could attain higher site-specific drug delivery improving the efficacy of the treatment in various therapeutical applications, especially in cancer therapy, and could also be used as tissue engineering scaffold due to its porous interconnected and biocompatible behavior.  相似文献   

7.
温度和pH双敏性PVME/CMCS水凝胶辐射交联制备及其性能   总被引:1,自引:0,他引:1  
以聚甲基乙烯基醚(PVME)和羧甲基壳聚糖(CMCS)为原料, 采用电子束辐照交联方法制备聚甲基乙烯基醚/羧甲基壳聚糖(PVME/CMCS)水凝胶, 研究了温度、pH值、CMCS含量等对PVME/CMCS水凝胶溶胀度的影响, 同时以5-氟尿嘧啶(5-Fu)作模型药物, 初步探讨了凝胶药物释放性能. 结果表明, 辐射剂量在20—40 kGy时, 凝胶分数随辐射剂量的增加而快速增加, 辐射40 kGy以后趋于平衡. 在相同辐射剂量下, 随着体系中CMCS含量的增加, 凝胶分数反而减少. 该水凝胶具有一定的温度和pH敏感性, 其低临界溶解温度(LCST)在35 ℃左右, 并且在相同时间内和25及37 ℃下的溶胀反复可逆, 表现出较快的响应性. pH<3.0和pH>5.0时, 溶胀度较大; pH值为3.0~5.0时, 凝胶网络由于静电力收缩, 溶胀度较小. CMCS含量的增加和辐射剂量的减小均可提高凝胶载药量. 药物释放时间可通过改变体系中CMCS的含量和辐射剂量来调节.  相似文献   

8.
崔亮  李洋  侯小东  宫文娟  徐宇虹  曹阿民 《化学学报》2007,65(19):2181-2186
采用液相多肽合成法制备得到窄分子量分布、结构可控的生物相容性聚乙二醇嵌段共聚树枝状聚赖氨酸阳离子功能大分子(PEG-b-Dendritic PLL). 运用1H NMR核磁共振、凝胶电泳以及荧光淬灭滴定手段对所得阳离子两嵌段大分子的化学结构及其与质粒DNA (pDNA)结合作用与复合行为进行了研究. 结果表明聚乙二醇嵌段树枝状聚赖氨酸与pDNA分子可以在缓冲溶液中形成稳定的胶束, pDNA与阳离子树枝赖氨酸嵌段通过静电相互作用形成胶束核, 其水溶性聚乙二醇嵌段形成水溶性胶束壳, 提高了阳离子大分子/pDNA复合胶束的稳定性. 同时发现随着阳离子嵌段树枝状赖氨酸代数的增加, 阳离子两嵌段大分子与pDNA的结合作用增强, 有利于其作为基因转染生物功能载体的应用.  相似文献   

9.
Cellulose-based hydrogel materials were prepared and modified with tannic acid and l-methionine using ionic liquid as the solvent. The gels were prepared to develop a sustained release medium for selenourea (SeU). The drug delivery characteristics of selenourea-loaded cellulose (CSeU), selenourea-loaded tannic acid-modified cellulose (CTSeU), and selenourea-loaded L-methionine-modified cellulose (CMSeU) were investigated in aqueous media and simulated gastric fluid (SGF) media. This modified gel beads have been characterized using field emission scanning electron microscope, X-ray energy-dispersive spectroscopy, Fourier transform infrared spectroscopy, thermogravimetry–differential thermal analysis and swelling properties and compared with those of the unmodified ones. We also investigated the inhibitory effects of SeU released from these gels on the activity of mushroom tyrosinase. Out of all the gel materials, CTSeU showed maximum SeU release both in water and SGF media. However, tyrosinase inhibitory action in PBS medium was comparable for all the three gel materials.  相似文献   

10.
Release of calcein and griseofulvin (GRF) from control (gels in which solutes are dissolved in) and liposomal gels was studied using agarose-assisted immobilization as a technique to separate gels from drug-receptor compartments. Liposomes composed of phosphatidylcholine (PC) or distearoyl-glycero-PC and cholesterol (DSPC/Chol), and incorporating calcein or GRF were prepared by thin film hydration. After cleaning the liposomes they were dispersed in different hydrogels (carbopol 974 [1, 1.5 or 2% (w/w)], hydroxylethyl-cellulose (HEC) [4% (w/w)], or a mixture of the two), and release of calcein or GRF was followed by fluorescence or photometric technique, respectively. Results show that calcein release from liposomal gels is slower compared to control gels, and can be further retarded by using rigid-membrane liposomes (faster release from PC-liposome compared to DSPC/Chol-liposome gels). Additionally, calcein release is not affected by the lipid amount loaded (in the range from 2 to 8 mg/ml), therefore solute loading can be controlled according to needs.

Oppositely, GRF release from liposomal gels is determined by drug loading. At high drug loading levels (compared to GRF aqueous solubility), GRF is released with constant rate from liposomal gels irrespective of liposome type (PC or DSPC/Chol). Thereby, for amphiphilic/lipophilic drugs, drug properties (solubility, log P) determine the system behavior.

Calcein and GRF release from control carbopol gels is faster compared to HEC and mixture gels. The same is true for calcein in liposomal gels. Carbopol gel rheological properties were found to be significantly different (compared to the other gels), implying that these characteristics are important for drug diffusion from gels.  相似文献   


11.
用γ辐射技术合成了K 型卡拉胶 (KC)与聚N 异丙基丙烯酰胺共混凝胶 (Blendgels) .合成产物透明 ,有弹性和较好的力学强度 .对不同条件下共混凝胶性能的测定结果表明 ,所形成的共混凝胶有明显的氯化钠相转变性质 ,也保持了聚N 异丙基丙烯酰胺 (PNIPAM)特有的温度敏感性 (LCST为 34℃ )  相似文献   

12.
In this study, we demonstrated the potential use of polypseudorotaxanes (PPRXs) of polyethylene glycol (PEG, molecular weight: 2000)-grafted polyamidoamine dendrimer (PEG-dendrimer) with cyclodextrins (CyDs) as novel sustained release systems for plasmid DNA (pDNA). PEG-dendrimer/pDNA complex formed PPRXs with α-CyD and γ-CyD solutions, but not with β-CyD solution. In the PEG-dendrimer/CyDs PPRXs systems, 17.9 mol of α-CyD and 8.8 mol of γ-CyD were involved in the PPRXs formation with one PEG chain by α-CyD and γ-CyD, respectively. In addition, the CyDs PPRX formation provided the sustained release of pDNA from PEG-dendrimer complex with pDNA at least 72 h in vitro. In addition, the release of pDNA from CyDs PPRX retarded as the dissolution medium volume decreased. These results suggest that the PEG-dendrimer/CyD PPRX systems can work as a sustained DNA release system, and the PPRX formation with CyDs may be useful as a sustained drug delivery technique for other pegylated polymers.  相似文献   

13.
An enzyme-responsive polysaccharide supramolecular targeted nanoassembly was successfully constructed by the host-guest complexation of positively charged mono-(6-(tetraethylenepentamine)-6-deoxy)-β-cyclodextrin(TEPA-CD) with adamantane-grafted hyaluronic acid(HA-ADA).Possessing a series of positively charged polyamine chains, the obtained polysaccharide nanoassembly could serve as a biocompatible plasmid DNA(p DNA) container. More interestingly, the p DNA could be released from the nanoassembly through the enzymatic degradation of HA skeleton, which realized the controlled p DNA binding and release. Besides, the polysaccharide nanoassembly exhibited lower cytotoxicity than the commercial transfection reagents 25 k Da b PEI(PEI25 k), accompanied by similar gene delivery effect. We believe that this work might present a convenient method for targeted,controlled gene delivery.  相似文献   

14.
This research aims to fabricate and characterize chemically crosslinked CMC/PVP-co-poly (AMPS) based hydrogel for the sustained release of model drug metoprolol tartrate through the free radical polymerization technique. Box-Behnken Design was used to optimize CMC/PVP-co-poly (AMPS) hydrogel by varying the content of reactants such as; polymers (CMC and PVP), monomer (AMPS), and crosslinker (EGDMA). Carboxymethyl cellulose (CMC) was crosslinked chemically with AMPS with a constant ratio of PVP by the ethylene glycol dimethacrylate as the crosslinker in the presence of sodium hydrogen sulfite (SHS)/ammonium peroxodisulfate (APS) as initiators. After developing CMC-based hydrogels using different polymers, monomer, and crosslinker concentrations, this study encompassed dynamic swelling, sol–gel fraction, drug release and chemical characterizations such as FTIR, XRD, TGA, DSC, and SEM. In vitro drug release and swelling were performed at 1.2 and 6.8 pH to determine the sustained release pattern and pH-responsive behavior. These parameters depended on the crosslinker, polymer, and monomer ratios used in the formulation development. XRD, SEM, and FTIR showed the successful grafting of constituents resulting in the formation of a stable hydrogel. DSC and TGA confirmed the thermodynamic stability of the hydrogel. Hydrogel swelling was increased with an increase in the ratio of monomer; however, an increase in the ratio of polymer and crosslinker decreased the hydrogel swelling. In vitro gel fraction and drug release also depended on polymer, monomer, and crosslinker ratios. The fabricated CMC/PVP-co-poly (AMPS) hydrogels constituted a potential system for sustained drug delivery.  相似文献   

15.
The new copolymeric hydrogels based on 2-hydroxyethyl methacrylate (HEMA) and itaconic acid (IA) were prepared by gamma irradiation, in order to examine the potential use of these hydrogels in controlled drug release systems. The influence of IA content in the gel on the swelling characteristics and the releasing behavior of hydrogels, and the effect of different drugs, theophylline (TPH) and fenethylline hydrochloride (FE), on the releasing behavior of P(HEMA/IA) matrix were investigated in vitro. The diffusion exponents for swelling and drug release indicate that the mechanisms of buffer uptake and drug release are governed by Fickian diffusion. The swelling kinetics and, therefore, the release rate depends on the matrix swelling degree. The drug release was faster for copolymeric hydrogels with a higher content of itaconic acid. Furthermore, the drug release for TPH as model drug was faster due to a smaller molecular size and a weaker interaction of the TPH molecules with(in) the P(HEMA/IA) copolymeric networks.  相似文献   

16.
The objective of the work is to synthesize pectin-N, N-Dimethylacrylamide (DMAA) hydrogel by gamma radiation without using any initiators and cross-linking agents. Effect of radiation doses on gel fraction and equilibrium swelling as a function of pH were studied, and 5 kGy radiation dose was found to be the optimum dose for hydrogel synthesis. The grafting /crosslinking was investigated by Fourier transform infrared spectroscopy. Thermal properties and surface morphology were studied by differential scanning calorimetry and scanning electron microscopy. To study the drug release kinetics, 5-fluorouracil was loaded into the hydrogel and in vitro release was carried out in simulated gastric and intestinal fluid. The release profile of drug showed that more than 90% of the loaded drugs were released after 4 hours at both gastric fluid and intestinal fluid pH. Drug release data was fitted into zero order, Higuchi and Korsmeyer-Peppas kinetic models. Higuchi model was found to be the best fitted and release exponent ‘n’ value of Korsmeyer-Peppas model indicated the non-Fickian transport.  相似文献   

17.
In this study, the in vitro degradation behavior of self-assembled liposome gel was investigated, especially in comparison with rheological studies. The liposome gel, physically cross-linked by hydrophobic interactions, was obtained by mixing liposome solution with cholesterol-end capped polyethylene glycol. The liposome gel was found to have rheological behavior similar to that of Maxwell model. The plateau modulus of the liposome gel, an important value to reflect the effective cross-linking density among the network, was dependent on both the liposome concentration and the polymer concentration. When the liposome gels were exposed to an aqueous solution, they first showed a period of swelling phase due to adsorption of water and then a dissolution phase began, leading to the full degradation of the network. The liposome gel with higher plateau modulus (i.e. higher effective cross-linking density) was found to degrade more slowly, indicating that the degradation behavior of the gel was closely related with the rheological properties. In order to study the gel degradation mechanism more directly, dextran blue-loaded liposome gel was prepared. In the initial period of the liposome gel exposure to the aqueous solution, the dextran blue release was of Fickian diffusion transport behavior. After that period, the release mechanism was found to be of Super Case II transport, which was gel matrix relaxation controlled.  相似文献   

18.
This study demonstrates the preparation of a renewable and biocompatible co-cross-linked nanocomposite hydrogel from poly(methyl vinyl ether-co-maleic acid), poly(ethylene glycol) and nanofibrillated cellulose (NFC). The cross-linking reaction was favored by the formation of ester linkages as evidenced by Fourier transform infrared spectroscopy. The increase in gel fraction content of the treated NFC varied from 22 to 85 % which exhibited an increase in degree of chemical cross-linking to form a rigid network with the addition of varying amount of NFC (20–60 %). This increase in gel rigidity influenced gel swelling, showing relatively reduced water uptake ability above 40 % NFC. Rheological measurements indicated the formation of gels with superior mechanical properties.  相似文献   

19.
In this work, a hemicellulose-containing hydrogel was synthesized. As the first step, a temperature- and pH-sensitive copolymer was synthesized from itaconic acid and N-isopropylacrylamide (NIPAAm). Then the hydrogel was prepared by reacting the copolymer with acylated hemicellulose and polyvinyl alcohol. The morphology, compressive strength, thermal stability, swelling/deswelling behavior, drug-release behavior performances of the hydrogels were investigated. The lower critical solution temperature of the hydrogels varied in 34–44°C when the NIPAAm and itaconic acid mass ratios ranged in 100/0–90/10. Both temperature and pH had a significant influence on equilibrium swelling ratio of hydrogels. The equilibrium swelling ratio increased with pH, but decreased with temperature. Cytocompatibility assay demonstrated that this hemicellulose-containing hydrogel was biocompatible. The release process of salicylic acid suggested that this hydrogel had a potential use in controlled drug release.  相似文献   

20.
用自由基引发3-丙烯酰胺基苯硼酸(AAPBA)、N,N-二甲基丙烯酰胺(DMAA)和丙烯酰胺(AAm)共聚交联制得新型三嵌段水凝胶P(AAPBA-co-DMAA-co-AAm), 与传统的两嵌段聚合物相比, 该凝胶具有良好的糖敏感特性, 在质量浓度200 mg/dL以上有较高的糖响应特性, 这一数值接近糖尿病病人的血糖阈值, 其溶胀度达10倍以上, 同时糖响应时间缩短到2~3 h. 振荡实验结果表明, 所得凝胶对糖呈现出良好的刺激-响应特性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号