首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tetraborate is investigated as the eluent ion for suppressed electrostatic ion chromatography (EIC) using a zwitterionic stationary phase. Good separation of a range of inorganic anions (SO4(2-), Cl-, NO3-, Br-, NO3-, ClO3-, and I-) was obtained, with detection limits for highly conducting ions (SO4(2-), Cl-, NO2-, Br- , and NO3-) being less than 8 x 10(-8) M, and for weakly conducting anions (ClO3- and I-) being 2.7 x 10(-7) and 5.8 x 10(-7) M, respectively. Calibration curves were linear up to 1.8 mM of each analyte. Retention times were found to increase with increasing eluent concentration and a linear relationship was observed between log k' and log[Na2B4O7] for all analytes. This behaviour is attributed to the progressive formation of a binary electrical double layer at the surface of the zwitterionic stationary phase. Retention times of analytes could be manipulated by varying the concentration of the eluent. This new suppressed-EIC system was applied to the determination of inorganic anions (SO4(-2) , CI-, NO3-, NO2-, and Br-) in snow and rainwater samples.  相似文献   

2.
Arai K  Mori M  Hironaga T  Itabashi H  Tanaka K 《色谱》2012,30(4):404-408
A combination of hydrophilic interaction chromatographic(HILIC) column and a weakly acidic cation-exchange resin(WCX) column was used for simultaneous separation of inorganic anions and cations by ion chromatography(IC).Firstly,the capability of HILIC column for the separation of analyte ions was evaluated under acidic eluent conditions.The columns used were SeQuant ZIC-HILIC(ZIC-HILIC) with a sulfobetaine-zwitterion stationary phase(ZIC-HILIC) and Acclaim HILIC-10 with a diol stationary phase(HILIC-10).When using tartaric acid as the eluent,the HILIC columns indicated strong retentions for anions,based on ion-pair interaction.Especially,HILIC-10 could strongly retain anions compared with ZIC-HILIC.The selectivity for analyte anions of HILIC-10 with 5 mmol/L tartaric acid eluent was in the order of I-> NO-3 > Br-> Cl-> H2PO-4.However,since HILIC-10 could not separate analyte cations,a WCX column(TSKgel Super IC-A/C) was connected after the HILIC column in series.The combination column system of HILIC and WCX columns could successfully separate ten ions(Na+,NH+4,K+,Mg2+,Ca2+,H2PO-4,Cl-,Br-,NO-3 and I-) with elution of 4 mmol/L tartaric acid plus 8 mmol/L 18-crown-6.The relative standard deviations(RSDs) of analyte ions by the system were in the ranges of 0.02%-0.05% in retention times and 0.18%-5.3% in peak areas through three-time successive injections.The limits of detection at signal-to-noise ratio of 3 were 0.24-0.30 μmol/L for the cations and 0.31-1.2 μmol/L for the anions.This system was applied for the simultaneous determination of the cations and the anions in a vegetable juice sample with satisfactory results.  相似文献   

3.
[Ru(VI)(TMP)(NSO2R)2] (SO2R = Ms, Ts, Bs, Cs, Ns; R = p-C6H4OMe, p-C6H4Me, C6H5, p-C6H4Cl, p-C6H4NO2, respectively) and [Ru(VI)(Por)(NTs)2] (Por = 2,6-Cl2TPP, F20-TPP) were prepared by the reactions of [Ru(II)(Por)(CO)] with PhI=NSO2R in CH2Cl2. These complexes exhibit reversible Ru(VI/V) couple with E(1/2) = -0.41 to -0.12 V vs Cp2Fe(+/0) and undergo imido transfer reactions with styrenes, norbornene, cis-cyclooctene, indene, ethylbenzenes, cumene, 9,10-dihydroanthracene, xanthene, cyclohexene, toluene, and tetrahydrofuran to afford aziridines or amides in up to 85% yields. The second-order rate constants (k2) of the aziridination/amidation reactions at 298 K were determined to be (2.6 +/- 0.1) x 10(-5) to 14.4 +/- 0.6 dm3 mol(-1) s(-1), which generally increase with increasing Ru(VI/V) reduction potential of the imido complexes and decreasing C-H bond dissociation energy (BDE) of the hydrocarbons. A linear correlation was observed between log k' (k' is the k2 value divided by the number of reactive hydrogens) and BDE and between log k2 and E(1/2)(Ru(VI/V)); the linearity in the former case supports a H-atom abstraction mechanism. The amidation by [Ru(VI)(TMP)(NNs)2] reverses the thermodynamic reactivity order cumene > ethylbenzene/toluene, with k'(tertiary C-H)/k'(secondary C-H) = 0.2 and k'(tertiary C-H)/k'(primary C-H) = 0.8.  相似文献   

4.
The effects of salts (NaCl, NaClO4, MgCl2, CeCl3) added to background electrolyte (BGE) solutions (10 mmol L(-1) sodium phosphate, pH 7.2) on electroosmotic flow (EOF) and the separation selectivity of anions (chloride, bromide, iodide, nitrite, nitrate, chlorate, thiocyanate, iodate, chromate, and molybdate ion) by capillary electrochromatography using the zwitterionic surfactant 3-(N,N-dimethylmyristylammonio)propane sulfonate (C14N3S) as a pseudo-stationary phase were investigated. There are two mechanisms affecting the separations: 1. the cations and anions of the added salts interact with the zwitterionic surfactant to varying degrees, thus changing the overall retention of the analytes; and 2. they change the EOF and the resulting apparent mobilities. It was shown that a BGE containing perchlorate and a low concentration of zwitterionic surfactant (2 mmol L(-1)) gave a stable and reproducible EOF and the concentration of perchlorate could be used to manipulate the separation selectivity for polarizable anions, such as iodide and thiocyanate. These effects are discussed in terms of measured association constants describing the interaction of anions and cations with the zwitterion.  相似文献   

5.
Electrostatic ion chromatography (EIC) using a zwitterionic stationary phase (formed by coating a C18 material with a hydrophobic zwitterionic surfactant) was studied with a mobile phase comprising an aqueous solution of histidine at the pH of its isoelectric point, together with non-suppressed conductometric detection. Anions and cations were found to be eluted as separate peaks, unlike the elution behaviour observed on the same system when pure water was used as mobile phase. An explanation was suggested in terms of protonation equilibria of the overall uncharged histidine to form small amounts of histidine cations and anions in the mobile phase which could act as counterions for analyte anions and cations. This suggestion was supported by measured pH changes occurring in the bands of eluted analyte anions (a decreased pH compared to the mobile phase) and cations (an increased pH compared to the mobile phase). The analytical potential of this type of EIC is discussed.  相似文献   

6.
The varying degrees of protonation of N-(phosphonomethyl)glycine (PMG, glyphosate) were investigated with infrared (IR) spectroscopy and ab initio frequency calculations. The zwitterionic nature of PMG in solution was confirmed, and intramolecular hydrogen bonding was identified. Successive protonation of the PMG molecule follows the order amine, phosphonate, carboxylate. Intramolecular hydrogen bonding is indicated to exist at all stages of protonation: between both RCO(2-) and RNH(2)(+) and RPO(3)(2-) and RNH(2+) in HL(2)(-) (where L represents the ligand PMG); between RCO(2)(-) and RNH(2)(+) in H(2)L(-); predominantly between RPO(3)(2-) and RNH(2)(+) in H(3)L. There are strong indications that the zwitterion is intact throughout the pH range investigated. Results from IR and extended X-ray absorption fine structure (EXAFS) spectroscopies provide new evidence for structures of N-(phosphonomethyl)glycinecopper(II) complexes. The structures of 1:1 complexes, CuL(-) and CuHL, are essentially the same, differing only in protonation of the phosphonate group. Copper(II) lies at the center of a Jahn-Teller distorted octahedron with all three donor groups (amine, carboxylate, phosphonate) of PMG chelating with copper(II) to form two five-membered chelate rings oriented in the equatorial plane. EXAFS indicates that oxygen (most likely a water molecule) is a fourth ligand, which would thus occupy the fourth corner in the equatorial plane of the elongated octahedron. CuL(2)(4-) most probably forms an isomeric mixture in solution, and there are indications that this mixture is dominated by complexes where two PMG ligands are bound to copper(II) via equatorial and axial positions, with both phosphonate and carboxylate donor groups responsible for chelation at axial positions.  相似文献   

7.
Hu W  Tanaka K  Hasebe K 《The Analyst》2000,125(3):447-451
A new ion chromatographic (IC) system, which uses zwitterionic (e.g., Zwittergent 3-14) micelles as both stationary and mobile phases, highly useful for the analysis of inorganic anions in biological samples, was developed. The zwitterionic micellar stationary phase (which is obtained by immobilizing the zwitterionic surfactant on surfaces of the reversed-phase ODS) showed high ability to confine the elution bands of the large amount of SO4(2-) and Cl- to narrow zones. As a result, a base-line separation of NO2-, Br- and NO3- from SO4(2-) and Cl- is always achieved. The zwitterionic micellar mobile phase, (which is obtained by dissolving the zwitterionic surfactant with a suppressive electrolytic solution, e.g., aqueous NaHCO3 solution), on the other hand, showed high ability for rapid elution of proteins. The separation column is therefore always being cleaned up even after the protein-containing sample is directly injected. The zwitterionic micelles are also insensitive to conductivity detection, therefore either the suppressed or the non-suppressed conductivity detection method is applicable for detection of the analyte ions. Urine and serum were chosen as the model real samples and were analysed with direct sample injection; the results of successful determination of a number of inorganic anions (SO4(2-), Cl-, NO2-, Br- and NO3-) in both samples have demonstrated the usefulness of this new IC system.  相似文献   

8.
We have determined by X-ray crystallography the structures of three dinuclear zirconium(IV) complexes containing the heptadentate ligand dhpta (where H(5)dhpta = 1,3-diamino-2-propanol-N,N,N',N'-tetraacetic acid, 1) and different countercations: K(2)[Zr(2)(dhpta)(2)].5H(2)O (2.5H(2)O), Na(2)[Zr(2)(dhpta)(2)].7H(2)O.C(2)H(5)OH (3.7H(2)O.C(2)H(5)OH), and Cs(2)[Zr(2)(dhpta)(2)].H(5)O(2).Cl.4H(2)O (4.H(5)O(2).Cl.4H(2)O). In the K(I) complex 2, crystallized from water, the two Zr(IV) ions are 3.5973(4) A apart and bridged via two alkoxo groups (average Zr-O 2.165 A). Each Zr(IV) is eight-coordinate and also bound to two N atoms (average Zr-N 2.448 A), and four carboxylate O atoms (average Zr-O 2.148 A). The two dhpta ligands in the dinuclear unit have different conformations. One face of the complex contains an array of 14 oxygen atoms and interacts strongly with the two K(I) ions, one of which is 6-coordinate, the other 8-coordinate, which are 3.922(4) A apart and bridged by a carboxylate O and by two water molecules. The structures of the dinuclear anion [Zr(2)(dhpta)(2)](2-) in the Na(I) complex 3 and in the Cs(I) complex 4 are essentially identical to that found in complex 2, although the alkali metal ions coordinate differently to the oxygen-rich face. All Zr(IV) ions have a distorted triangulated dodecahedral geometry. Although the crystal structure of complex 2 does not indicate the presence of acidic protons, in 4 an [H(5)O(2)](+) unit is strongly H-bonded to an oxygen atom of a coordinated carboxylate group. 1D and 2D (1)H and (13)C NMR spectroscopic and potentiometric studies reveal two deprotonations with pK(a) values of 9.0 and 10.0. At low pH, two carboxylate groups appear to undergo protonation accompanied by chelate ring-opening, and the complex exhibits dynamic fluxional behavior in which the two magnetically nonequivalent dhpta ligands exchange at a rate of 11 s(-1) at pH 3.30, 298 K, as determined from 2D EXSY NMR studies. Ligand interchange is not observed at high pH (>11). The same crystals of complex 2 were obtained from solutions at pH 3 or 12. The dynamic configurational change is therefore mediated by the aqueous solvent.  相似文献   

9.
ESI mass spectrometry was used to investigate the europium complexation by tridentate ligands L identical with 2,6-bis(5,6-dialkyl-1,2,4-triazin-3-yl)-pyridines (DATP) that have shown unique separation properties of actinides(III) from lanthanides(III) in nitric acid solutions. Complexes of three ligands, namely methyl (DMTP), n-propyl (DnPTP), and iso-propyl (DiPTP), have been investigated in acidic solutions to check the aqueous-phase stability of Eu(L)(3)(3+) ions identified previously in the solid state. The data obtained show, first, the presence of stable Eu(L)(3)(3+) ions with DnPTP (log beta(3)(app) = 12.0 +/- 0.5) and DiPTP (log beta(3)(app) = 14.0 +/- 0.6) in methanol/water (1:1 v/v) solutions under pH range 2.8-4.6 and, second, a mechanism whereby alkyl moieties contribute to a self-assembling process leading to the formation of Eu(L)(3)(3+) ions. Other complexes such as Eu(L)(2)(3+) ions are only observed for DnPTP (log beta(2)(app) = 6.7 +/- 0.5) and DMTP (log beta(2)(app) = 6.3 +/- 0.1) and Eu(L)(3+) only for DMTP (log beta(1)(app) = 2.9 +/- 0.2). The log beta(n)(app) values for the Eu(L)(n)(3+) (n = 1-3) complexes were determined at pH 2.8. Better insight was given in this study concerning the role of the hydrophobic exterior of the ligands for the design of a new range of extracting agents.  相似文献   

10.
The retention behaviour of amino acids was studied in hydrophilic LC on zwitterionic stationary phases. Evaluation of the influences of acetonitrile/water content, ammonium acetate (NH4Ac) concentration and mobile phase pH values was performed. Fourteen amino acids were tested and they were all retained to varying extents, with poorer retention in high water content eluents. The linear relationship between the logarithm of retention factor and log(water content) indicated that adsorption dominated or at least was partly involved in the separation mechanism. Electrostatic and hydrophilic interactions also contributed to the retention of these amino acids under different separation conditions with various mobile phase pH values and NH4Ac concentrations. Thus, the overall retention mechanism could be explained as a combination of adsorption, electrostatic and hydrophilic interactions. The magnitude and contribution of each mechanism is dependent on the nature of the analyte and the separation conditions applied.  相似文献   

11.
Methods for separation of ions by ion-exchange, ion-pair, and zwitterion ion chromatography share at least one common thread--the induced formation of a cation-anion pair in the stationary phase. Selectivity can be defined as the relative ability of sample ions to form such a pair. Examples are given in anion-exchange chromatography to show the effect of variations in the geometry, bulkiness and polarity of the resin cation on selectivity. The type of resin matrix, the hydrophobic nature of the resin surface and the degree of solvation also affect chromatographic behavior. The selectivity series observed in ion chromatography seems to be best explained by the interplay of two components: electrostatic attraction (ES) and the enforced-pairing (EP) that is brought about by hydrophobic attraction and by water-enforced ion pairing. Selectivity in ion-pair chromatography (IPC) and in zwitterion ion chromatography (ZIC) is affected by both the mobile phase cation and anion. This leads to elution orders for anions that are different from conventional ion-exchange chromatography (IC) of anions where cations are excluded from the stationary phase and have little effect on a separation. The elution order of anions in ZIC is similar to that in IC except for small anions of 2-charge, which are retained more weakly in ZIC. A unique advantage of ZIC is that sample ions can be eluted as ion pairs with pure water as the eluent and a conductivity detector. The mechanism for separation of anions on a zwitterionic stationary phase has been a subject for considerable debate. The available facts point strongly to a partitioning mechanism or a mixed mechanism in which partitioning is dominant with a weaker ion-exchange component.  相似文献   

12.
In aqueous media, alpha-keto amides LGCH(2)COCON(R)CH(R')CH(3) (1a, R = Et, R' = H; 1b, R = (i)()Pr, R' = Me; 1c, R = Ph, R' = H) with various carboxylate leaving groups (LG) at the C-3 position undergo photocleavage and release of carboxylic acids with formation of diastereomeric 5-hydroxyoxazolidin-4-ones 2a,c in the cases of 1a,c or 5-methyleneoxazolidin-4-ones 3b in the case of 1b. For 1a,b, Phi(photocleavage) = 0.24-0.38, whereas Phi(photocleavage) = ca. 0.05 for 1c. The proposed mechanism involves transfer of hydrogen from an N-alkyl group to the keto oxygen to produce zwitterionic intermediates 4a-c that eliminate carboxylate anions. The resultant imminium ions, H(2)C=C(OH)CON(+)(R)=C(R')CH(3) 5a-c, cyclize intramolecularly to 3b or undergo intermolecular addition of water followed by tautomerization and cyclization to give 2a,c. These inter- or intramolecular trapping reactions of 5 release protons that decrease the pH and cause bleaching of the 620 nm band of the pH indicator, bromocresol green. Determination of the bleaching kinetics by laser flash photolysis methods in the case of 1a gives time constants of 18-137 mus, depending on the leaving group ability of the carboxylate anion, whereas amides 1b show only a small leaving group effect. For 1a, the large leaving group effect is consistent with rate-limiting carboxylate elimination from 4a, whereas the proton release step would be largely rate determining for 1b. Photolyses of 1a (LG = CH(3)CO(2)(-), PhCH(2)CO(2)(-)) in neat CH(3)CN results in carboxylate elimination to form imminium ion 5a, followed by internal return to give aminals.  相似文献   

13.
The rapid separation of inorganic anions on short monolithic columns permanently coated with a long chained zwitterionic carboxybetaine-type surfactant is shown. The surfactant, N-dodecyl-N,N-(dimethylammonio)undecanoate (DDMAU), was used to coat 2.5, 5.0 and 10 cm long reversed-phase silica monoliths, resulting in a permanent zwitterionic exchange surface when used with aqueous based eluents. The unique structure of the surfactant results in a charge double layer structure on the surface of the stationary phase, with strong internal anionic and weak external cationic exchange groups. The dissociation of the weak external carboxylic acid group acts to shield the inner anionic exchange site, resulting in substantial effective capacity changes with eluent pH. Utilising this effect with the application of an eluent pH gradient, simultaneously combined with eluent flow-rate gradients, very rapid simultaneous separations of both weakly retained anions and strongly retained polarisable anions was possible, with up to 10-fold decreases in overall run times. Coating stability and retention times under isocratic and isofluentic eluent conditions were shown to be reproducible over >450 repeat injections, with peak efficiency values averaging 29,000 N/m for the 2.5 cm column and 42,000 N/m for the 10 cm monolithic column, again under isocratic elution conditions.  相似文献   

14.
In this study, ammonium-functionalized MCM-48 (Mobil Composite Material No. 48) was used as an adsorbent to remove nitrate (NO(-)(3)) and monobasic phosphate (H(2)PO(-)(4)) anions from aqueous solutions. The effects of operating conditions such as temperature, adsorbent loading, initial anion concentration, pH, and the presence of competitive ions on the adsorption performances were examined. Results showed that adsorption capacity decreased with increasing temperature. The adsorption capacity increased with adsorbent loading and initial anion concentration. The removal of nitrate was maximum at pH<8, while phosphate removal was maximized at pH 5. The adsorption was almost unaffected by the presence of competitive ions in the case of phosphate anions. However, their presence adversely affected nitrate adsorption. Desorption of both anions was rapidly achieved within 10 min using NaOH at 0.01 M. Regeneration tests showed that the adsorbent retained its capacity after 5 adsorption-desorption cycles.  相似文献   

15.
The structures and relative energies of the most stable conformers of both naked and microsolvated phenylalanine, Phe.(H(2)O)(n)(n=0-3), are calculated by density functional theory. For selected structures, coordination-constrained ab initio molecular dynamics simulations determine the proton-transfer mechanism connecting neutral and zwitterionic forms of Phe. The associated free-energy profiles are calculated by thermodynamic integration. While no zwitterionic free-energy minimum is found for naked Phe, microsolvation is found to stabilize the zwitterionic form. For cluster sizes n > or = 3, the proton-transfer equilibrium shifts towards the zwitterionic structure for specific proton-transfer pathways. The energetically most favourable interconversion path between the neutral and zwitterionic forms is through a H(2)O bridge with free-energy barriers as low as 14.4 kJ mol(-1) for Phe.(H(2)O)(3). The free energy required for breaking a carboxylic OH bond involved in intramolecular hydrogen bonding is typically lower than in the water-assisted case. However, the resulting zwitterion turns out to be unstable with respect to the backward proton-transfer reaction.  相似文献   

16.
The problem of column performance degradation due to irreversible binding of proteins encountered in ion chromatographic (IC) analysis of ions in protein-containing samples was overcome by using zwitterionic micelles (e.g., Zwittergent-3-14) as a portion of the eluent. A zwitterionic micellar eluent showed high ability for solubilization of proteins, and, hence, the protein-containing samples could be analyzed without need for deproteinization. On the other hand, the zwitterionic micelle was insensitive to conductivity but interacted with the analyte ions, due mainly to its unique configuration of charges (namely, the zwitterionic micelle containing both positively and negatively charged groups but carrying no net charge). Using a zwitterionic micellar eluent, the analyte ions could be detected selectively and sensitively, and moreover, the selectivity for the analyte ions was unique. A conventional anion-exchange column conditioned with a Zwittergent-3-14 micellar eluent was applied for the analysis of real biological samples (serum and urine) with direct sample injection. The results of the successful detection of inorganic anions (Cl-, SO4(2-), NO2-, Br-, and NO3-) have demonstrated the usefulness of this new IC approach for the analysis of biological samples.  相似文献   

17.
The biosynthesis of prostaglandins and leukotrienes proceeds through the formation of chemically reactive intermediates leukotriene A4 (LTA4) and prostaglandin H2 (PGH2) which in aqueous solutions have chemical half-lives of 3 s and 3 min, respectively. Prostacyclin (PGI2) is another chemically reactive prostanoid that has a chemical half-life of 3-4 min. The recent development of reversed phase HPLC stationary phases that are stable to elevated pH (pH 10-12) without significant column damage has permitted direct analysis of these acid-sensitive eicosanoids. Using electrospray ionization, molecular anions [M - H]- of these compounds were observed at m/z 317 for LTA4 and m/z 351 for both PGH2 and PGI2. The mechanism of formation of ions derived from collisional activation of LTA4 was studied using stable isotope labeled and chemical analogs of LTA4 and found to involve formation of highly conjugated anions at m/z 261 and 163. The collisional activation of the molecular anion of PGH2 yielded a product ion spectrum identical to that observed for the isomeric prostaglandins PGE2 and PGD2. However, it was possible to baseline separate PGE2, PDG2, and PGH2 by reversed phase HPLC using basic HPLC mobile phases. The collisional activation of PGI2 led to a family of abundant ions including highly conjugated carbon-centered and oxygen-centered radical species (m/z 245 and 205) likely derived from the attack of the carboxylate anion on the cyclic enolether of PGI2 as well as the most abundant product ion (m/z 215) which formed following loss of neutral hexanal and water. The structures of these product ions were consistent with high resolution measurements measured in a quadrupole time-of-flight mass spectrometer.  相似文献   

18.
Six new coordination polymers, namely {[Zn(btec)(0.5)(btmb)]·2H(2)O}(n) (1), {[Co(btec)(0.5)(btmb)(H(2)O)]·3H(2)O}(n) (2), {[Cu(btec)(0.5)(btmb)]·H(2)O}(n) (3), {[Cu(4)(btc)(4)(btmb)(4)]·H(2)O}(n) (4), {[Co(3)(bta)(2)(btmb)(2)]·2H(2)O}(n) (5), [Co(Hbta)(btmb)](n) (6) (H(4)btec = 1,2,4,5-benzenetetracarboxylate, H(3)btc = 1,3,5-benzenetricarboxylate, H(3)bta = 1,2,4-benzenetricarboxylate and btmb = 4,4'-bis(1,2,4-triazol-1-ylmethyl)biphenyl), have been successfully synthesized under hydrothermal conditions. All these complexes were structurally determined by single-crystal X-ray diffraction, elemental analysis, IR, TGA and XRD. Crystal structural analysis reveals that 1 is the first example of an unusual 3D framework with (8(6)) topology containing a 2D molecular fabric structure. Complex 2 exhibits a 3D NbO network with (6(4)·8(2)) topology. In 3, Cu(II) ions are coordinated by anti-conformational btmb ligands to form left- and right-handed double helices, which are further bridged by the 4-connected btec(4-) anions to give a 3D porous network. Complex 4 presents a rare 3D gra network structure with (6(3))(6(9)·8) topology. 5 and 6 were obtained through controllable pH values of solution, 5 features a scarce binodal (3,8)-connected tfz-d framework with the trinuclear Co(II) clusters acting as nodes, whereas 6 has an extended 2D 4(4) grid-like layer and the adjacent 2D layers are interconnected by strong hydrogen bonding interactions into a 3D supramolecular framework. The structural diversities indicate that distinct organic acid ligands, the nature of metal ions and the pH value play crucial roles in modulating the formation of the resulting coordination complexes and the connectivity of the ultimate topological nets. Moreover, magnetic susceptibility measurement of 5 indicates the presence of weak ferromagnetic interactions between the Co(II) ions bridged by carboxylate groups.  相似文献   

19.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

20.
New stationary phases for chromatographic separation of anions, obtained by loading liposomes made from dimyristolyphosphatidylcholine (DMPC) onto reversed-phase packed columns (C18 and C30) are reported. Mono- and divalent anions were used as model analyte ions and retention data for these species were obtained using the DMPC stationary phases and used to elucidate the separation mechanisms involved in this chromatographic system. The DMPC stationary phases can separate anions by either a solvation-dependent mechanism or an electrostatic ion-exchange mechanism, depending upon the relative magnitudes of the negative electrostatic potential (Psi(-)) of the phosphate moiety (P-) and the positive electrostatic potential (Psi(+)) of the quaternary ammonium groups (N+) on the headgroup of DMPC. If Psi(+) > Psi(-), such as in case where Psi(-) has been reduced either by binding of eluent cations (e.g., H+ or divalent cations) onto the P- group of DMPC or by steric screening when a C30 reversed-phase material was used to support the DMPC, then the overall electrostatic surface potential (and hence also the effective anion-exchange capacity) was generally large and the anions were separated on the basis of an electrostatic mechanism. However, if Psi(+) was similar to Psi(-), such as in the case of using a C18 reversed-phase support and monovalent cations as eluent cations, then the overall electrostatic surface potential and the effective anion-exchange capacity were very small and the analyte anions were separated on the basis of a solvation-dependent mechanism. The DMPC stationary phases were found to be suitable for the direct determination of iodide and thiocyanate in highly saline water samples, such as seawater samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号