首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
[ErW10O36]9- is the first polyoxometalate behaving as a single-molecule magnet (SMM). It shows frequency-dependent out-of-phase magnetization and a thermally activated single relaxation process with an effective barrier of 55.8 K. This single lanthanide ion polyoxometalate is the inorganic analogue of the bis(phthalocyaninato)lanthanide SMMs, both exhibiting very similar ligand field symmetries around the lanthanide ion (idealized D4d). It is chemically stable and offers new avenues for organization and processing of single-molecule magnets. Furthermore, it can be made free from nuclear spins and opens the possibility to be used for studies of decoherence on unimolecular qubits.  相似文献   

2.
The anionic oxalate-bridged bimetallic chain [Co(H2O)2Cr(ox)3]- shows slow relaxation of the magnetization, typical of the so-called single-chain magnets, when crystallized in segregated layers in a mixed salt with the supramolecular cations [C12H24O6K]+ and [(C12H24O6)(FC6H4NH3)]+. This is the first time that such phenomenon has been observed in an oxalate-bridge material. In view of the wide synthetic versatility exhibited by the oxalate ligand, it opens the door for the realization of a complete family of SCM materials whose physical properties might be tuned by the suitable replacement of M3+ ions within the chain. The information extracted from the systematic study of these compounds should provide important information concerning the main parameters that affect the slow-relaxation phenomena in this sort of 1D nanomagnets.  相似文献   

3.
The thermal-induced changes in molecular magnets based on Prussian blue analogues, M(3)[Fe(CN)(6)](2).xH(2)O (M = Mn, Co, Ni, Cu, Zn, and Cd), were studied from infrared, X-ray diffraction, thermo-gravimetric, M?ssbauer, and magnetic data. Upon being heated, these materials loose the crystalline water that enhances the interaction between the metal centers, as has been detected from M?ssbauer spectroscopy data. At higher temperatures, a progressive decomposition process takes place, liberating CN(-) groups, which reduces the iron atom from Fe(III) to Fe(II) to form hexacyanoferrates(II). The exception corresponds to the cobalt compound that undergoes an inner charge transfer to form Co(III) hexacyanoferrate(II). In the case of zinc ferricyanide, the thermal decomposition is preceded by a structural transformation, from cubic to hexagonal. For M = Co, Ni, Cu, and Zn the intermediate reaction product corresponds to a solid solution of M(II) ferricyanide and ferrocyanide. For M = Mn and Cd the formation of a solid solution on heating was not detected. The crystal frameworks of the initial M(II) ferricyanide and of the formed M(II) ferrocyanide are quite different. In annealed Mn(II) ferricyanide samples, an increasing anti-ferromagnetic contribution on heating, which dominates on the initial ferrimagnetic order, was observed. Such a contribution was attributed to neighboring Mn(II) ions linked by aquo bridges. In the anhydrous annealed sample such interaction disappears. This effect was also studied in pure Mn(II) ferrocyanide. The occurrence of linkage isomerism and also the formation of Ni(III), Cu(III), and Zn(III) hexacyanoferrates(II) were discarded from the obtained experimental evidence.  相似文献   

4.
Combining porosity and magnetic ordering in a single material presents a significant challenge since magnetic exchange generally requires short bridges between the spin carriers, whereas porosity usually relies on the use of long diamagnetic connecting ligands. Despite this apparent incompatibility, notable successes have been achieved of late in generating truly microporous solids with high magnetic ordering temperatures. In this critical review, we give an overview of this emerging class of multifunctional materials, with particular emphasis on synthetic strategies and possible routes to new materials with improved properties (149 references).  相似文献   

5.
6.
The incorporation of thioether groups in the structure of a Mn12 single-molecule magnet, [Mn12(O12)(L)16(H2O)4] with L = 4-(methylthio)benzoate, is a successful route to the deposition of well-separated clusters on native gold surfaces and to the addressing of individual molecules by scanning tunnelling microscopy.  相似文献   

7.
Rubber magnetic composites were prepared through the incorporation of magnetic soft lithium ferrite into acrylonitrile butadiene rubber. Standard sulfur‐based curing and peroxide curing systems were used for cross‐linking of rubber matrices. The experimental part was focused on the investigation of ferrite content and curing system composition on cross‐link density, physical‐mechanical, magnetic and shielding characteristics of composites. The results demonstrated that cross‐link density and physical‐mechanical properties of composites can be modified by both the amount of ferrite and composition of the curing system. The influence of curing systems on magnetic properties was negligible. It can be stated that the application of lithium ferrite to rubber matrix leads to the preparation of rubber composites with the ability to efficiently absorb harmful electromagnetic radiation in the tested frequency range. The shielding efficiency of composites increased with increasing content of magnetic filler.  相似文献   

8.
The preparation, X-ray structure, and detailed physical characterization are presented for a new type of single-molecule magnet [Mn4(O2CMe)2(pdmH)6](ClO4)2 (1). Complex 1.2MeCN.Et2O crystallizes in the triclinic space group P1, with cell dimensions at 130 K of a = 11.914(3) A, b = 15.347(4) A, c = 9.660(3) A, alpha = 104.58(1) degree, beta = 93.42(1) degree, gamma = 106.06(1) degree, and Z = 1. The cation lies on an inversion center and consists of a planar Mn4 rhombus that is mixed-valent, MnIII2MnII2. The pdmH- ligands (pdmH2 is pyridine-2,6-dimethanol) function as either bidentate or tridentate ligands. The bridging between Mn atoms is established by either a deprotonated oxygen atom of a pdmH- ligand or an acetate ligand. The solvated complex readily loses all acetonitrile and ether solvate molecules to give complex 1, which with time becomes hydrated to give 1.2.5H2O. Direct current and alternating current magnetic susceptibility data are given for 1 and 1.2.5H2O and indicate that the desolvated complex has a S = 8 ground state, whereas the hydrated 1.2.5H2O has a S = 9 ground state. Ferromagnetic interactions between MnIII-MnII and MnIII-MnIII pairs result in parallel spin alignments of the S = 5/2 MnII and S = 2 MnIII ions. High-frequency EPR spectra were run for complex 1.2.5H2O at frequencies of 218, 328, and 436 GHz in the 4.5-30 K range. A magnetic-field-oriented polycrystallite sample was employed. Fine structure is clearly seen in this parallel-field EPR spectrum. The transition fields were least-squares-fit to give g = 1.99, D = -0.451 K, and B4 degrees = 2.94 x 10(-5) K for the S = 9 ground state of 1.2.5H2O. A molecule with a large-spin ground state with D < 0 can function as a single-molecule magnet, as detected by techniques such as ac magnetic susceptibility. Out-of-phase ac signals (chi' M) were seen for complexes 1 and 1.2.5H2O to show that these complexes are single-molecule magnets. A sample of 1 was studied by ac susceptibility in the 0.4-6.4 K range with the ac field oscillating at frequencies in the 1.1-1000 Hz range. A single peak in chi' M vs temperature plots was seen for each frequency; the temperature of the chi' M peak varies from 2.03 K at 995 Hz to 1.16 K at 1.1 Hz. Magnetization relaxation rates were evaluated in this way. An Arrhenius plot gave an activation energy of 17.3 K, which, as expected, is less than the 22.4 K value calculated for the thermodynamic barrier for magnetization direction reversal for an S = 8 complex with D = -0.35 K. The 1.2.5H2O complex with an S = 9 ground state has its chi' M peaks at higher temperatures.  相似文献   

9.
The use of derivatised salicylaldoximes in manganese chemistry has led to the synthesis of a family of approximately fifty hexanuclear ([Mn(III)(6)]) and thirty trinuclear ([Mn(III)(3)]) Single-Molecule Magnets (SMMs). Deliberate, targeted structural distortion of the metallic core afforded family members with increasingly puckered configurations, leading to a switch in the pairwise magnetic exchange from antiferromagnetic to ferromagnetic. Examination of both the structural and magnetic data revealed a semi-quantitative magneto-structural correlation, from which the factors governing the magnetic properties could be extracted and used for predicting the properties of new family members and even more complicated structures containing analogous building blocks. Herein we describe an overview of this extensive body of work and discuss its potential impact on similar systems.  相似文献   

10.
Acylation by suberic acid chloride of chlorin with two oximated isosteviol groups on its periphery produced for the first time a macrocyclic system containing a porphyrin ring and two tetracyclic ent-beyerane frameworks.  相似文献   

11.
运用Material Studio 7.0软件构建模型,对不同卤化物所构成的无机铅卤钙钛矿进行了第一性原理分析,选用了点群结构为Pm3m的CsPbX_3(X=Cl,Br,I)立方晶胞,并在此基础上优化分析了带隙结构和态密度.通过调整不同的交换泛函得到了同一CsPbBr_3单胞优化后的不同的带隙和体模量.并对同一泛函PBE下CsPbCl_3、CsPbBr_3、CsPbI_3的带隙大小、态密度等结果进行了分析,结果显示,随着晶格参数从Cl到I变大,钙钛矿的体模量和电子带隙会变小,离子性也得到了增强.  相似文献   

12.
Single-chain magnets (SCM) are a novel class of molecular magnetic materials exhibiting slow magnetic relaxation, which arises from large uniaxial type magnetic anisotropy, strong intrachain and very weak or negligible interchain magnetic interactions. Although more than 20 examples of SCM have been reported, the controlled synthesis of SCM is still a challenge. Here we review the three strategies for the construction of SCM, highlight typical examples, discuss the role of intrachain and interchain interactions on the overall magnetic behavior of SCM as well as how to control or tune these interactions. For each strategy we present the advantages/shortcoming and then point out the main directions that remain to be developed in the field.  相似文献   

13.
Two new heterometallic cubane molecules have been synthesized. High-frequency electron paramagnetic resonance and magnetization measurements indicate that [Mn(3)Ni(hmp)(3)O(N(3))(3)(C(7)H(5)O(2))(3)] (1) displays a well-isolated S = 5 ground state (DeltaE > 120 K), with g = 2.0, D = -0.23 cm(-1), and ferromagnetic Mn-Mn exchange interactions competing with antiferromagnetic Ni-Mn interactions. [Mn(3)Zn(hmp)(3)O(N(3))(3)(C(3)H(5)O(2))(3)] (2) possesses a S = 6 ground state (DeltaE > 105 K), with g = 2.0, D = -0.14 cm(-1), and ferromagnetic Mn-Mn exchange interactions. Magnetization vs magnetic field data for oriented single crystals of 1 and 2 indicate that both complexes are single-molecule magnets.  相似文献   

14.
The conventional magnetic materials used in present-day technology, such as Fe, Fe2O3, Cr2O3, SmCo5, Nd2Fe14B, etc. are all atom-based, whose synthesis requires high-temperature routes. Employing ambient-temperature synthetic organic chemistry, it has become possible to engineer a bulk molecular material with long-range magnetic order, primarily due to the weak nature of intermolecular interactions in it. Typical synthetic approach to design molecule-based magnets consists of choosing molecular precursors, each bearing an unpaired spin, and assembling them in such a way that there is no compensation of spins at the scale of the crystal lattice. Magnetism being a co-operative effect, the spin-spin interaction must extend to all the three dimensions, either through space or through bonds. Specific occurrence of ‘spin delocalisation’ and ‘spin polarisation’ in molecular lattices is helpful in bringing about ferromagnetic interaction by facilitating necessary intermolecular exchange interactions. Since the first successful synthesis of molecular magnets in 1986, a large variety of them have been synthesized, which can be classified on the basis of the chemical nature of the magnetic units involved: organic systems, metal-based systems, hetero-bimetallic assemblies, or mixed organic-inorganic systems. The design of molecular magnets has also opened the doors for the unique possibility of designing polyfunctional molecular materials, such as magnets exhibiting second-order optical nonlinearity, liquid crystalline magnets, or chiral magnets. Solubility of molecular magnets, their low density and biocompatibility are attractive features. Being weakly colored, unlike the opaque classic magnets, possibilities of photomagnetic switching can be envisaged. Persistent efforts continue to design the ever-elusive polymer magnets for applications in industry. While providing a brief overview of the field of molecular magnetism, we highlight some recent developments, with emphasis on a few studies from the author's own lab.  相似文献   

15.
In materials science, a dynamic property sensitive to an environmental change (heat, light, electric current, pH, and other chemical or physical changes) is indispensable for intelligent materials. Such organic materials, however, are very limited even in conventional polymers. This paper clearly demonstrates that, regardless of the low molecular weight, a glycosylated amino acid derivative newly screened by a combinatorial method forms a macroscopic supramolecular hydrogel that reversibly swells or shrinks in response to the external temperature. Using the unique thermal response of the present hydrogel, we carried out the controlled release of DNA and the perfect removal of bisphenol A from the polluted water. Recently, advanced supramolecular polymers, in which monomers are noncovalently connected, are expected to be highly advantageous over traditional polymers because of their tunable and recyclable characteristics. The present result newly confers a dynamic feature on the supramolecular polymers, which is desirable for the sophisticated application in many fields.  相似文献   

16.
The review concerns the strategic approaches to the photomodulation of the magnetic properties of molecular hybrid compounds combining magnetic and optical properties. The approaches developed include photocontrol of intra- and intermolecular magnetic coupling and manipulation of the effect of the photochromic sublattice on the bulk behavior of molecular magnets. In the framework of the first approach, we consider photoinduced charge-transfer phase transitions, changes in the spin state of magnetic centers, photoswitching of intramolecular exchange interactions between magnetic centers connected by a photochromic bridge, and generation of high-spin organic molecules forming high-spin groups due to intermolecular exchange interactions. In the framework of the second approach, we discuss hybrid polyfunctional compounds combining magnetic and photochromic sublattices in the same crystal lattice, as well as intercalation of organic photochromes into voids or inter-layer space of organic magnetics (or vice versa). Creation of such materials allows not only several functions to be combined in the same lattice, which is important for reducing the size of hardware components, but also these properties to be controlled and modified through synergistic effects. The results of basic research suggest that novel materials for various practical applications can be created using principles of crystal chemical engineering. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 4, pp. 704–721, April, 2008.  相似文献   

17.
《Polyhedron》2005,24(16-17):2160-2164
Two compounds of composition [FBzPy][Pt(mnt)2] (1) and [FBzPy][Pt(mnt)2] · 0.25-MeCN (2) ([FBzPy]+ = 1-(4′-fluorobenzyl)pyridinium and mnt2− = maleonitriledithiolate) were prepared and their crystal structures were determined. The solvent molecule, MeCN, incorporated into lattice leads the anionic stacking pattern to be distinct between 1 and 2. The regular anionic stacking columns are connected by the anionic dimers to construct into 2D anionic networks in 1, while the anionic fourfold subunit develop into anionic layers though lateral S⋯S interactions in 2. As for two compounds, the magnetic susceptibilities in 2–350 K were measured, and the magnetic exchange schemes were built based on the analyses both crystal structures and extended Hückel molecular orbital calculations. The magnetic coupling model of an alternating AFM Heisenberg chain with an isolated AFM coupling dimer was dealt with 1, while a spin dimer with s = 1/2 with 2, and the magnetic coupling parameters were further gained via simulating the temperature dependent magnetic susceptibility data of two compounds.  相似文献   

18.
The preparations, X-ray structures, and detailed physical characterizations are presented for two new mixed-valence tetranuclear manganese complexes that function as single-molecule magnets (SMM's): [Mn4(hmp)6Br2(H2O)2]Br2-4H2O (2) and [Mn4(6-me-hmp)6Cl4]-4H2O (3), where hmp(-) is the anion of 2-hydroxymethylpyridine and 6-me-hmp(-) is the anion of 6-methyl-2-hydroxymethylpyridine. Complex 2-4H2O crystallizes in the space group P2(1)/c, with cell dimensions at -160 degrees C of a = 10.907(0) A, b = 15.788(0) A, c = 13.941(0) A, beta = 101.21(0) degrees, and Z = 2. The cation lies on an inversion center and consists of a planar Mn4 rhombus that is mixed-valence, Mn2(III)Mn2(II). The hmp(-) ligands function as bidentate ligands and as the only bridging ligands in 2-4H2O. Complex 3-4H2O crystallizes in the monoclinic space group C2/c, with cell dimensions at -160 degrees C of a = 17.0852(4) A, b = 20.8781(5) A, c = 14.835(3) A, beta = 90.5485(8) degrees, and Z = 4. This neutral complex also has a mixed-valence Mn2(III)Mn2(II) composition and is best described as having four manganese ions arranged in a bent chain. A mu2-oxygen atom of the 6-me-hmp(-) anion bridges between the manganese ions; the Cl(-) ligands are terminal. Variable-field magnetization and high-frequency and -field EPR (HFEPR) data indicate that complex 2-4H2O has a S = 9 ground state whereas complex 3.4H(2)O has S = 0 ground state. Fine structure patterns are seen in the HFEPR spectra, and in the case of 2.4H(2)O it was possible to simulate the fine structure assuming S = 9 with the parameters g = 1.999, axial zero-field splitting of D/k(B) = -0.498 K, quartic longitudinal zero-field splitting of B4(omicron)/k(B) = 1.72 x 10(-5) K, and rhombic zero-field splitting of E/k(B) = 0.124 K. Complex 2-4H2O exhibits a frequency-dependent out-of-phase AC magnetic susceptibility signal, clearly indicating that this complex functions as a SMM. The AC susceptibility data for complex 2-4H2O were measured in the 0.05-4.0 K range and when fit to the Arrhenius law, gave an activation energy of DeltaE = 15.8 K for the reversal of magnetization. This DeltaE value is to be compared to the potential-energy barrier height of U/k(B) = absolute value DSz(2) = 40.3 K calculated for 2-4H2O.  相似文献   

19.
The syntheses, structures, and magnetic properties of two new single-stranded hexadecanuclear manganese wheels [Mn16(CH3COO)8(CH3CH2CH2COO)8(teaH)12] x 10 MeCN (1 x 10 MeCN) and [Mn16((CH3)2CHCOO)16(teaH)12] x 4 CHCl3 (2 x 4 CHCl3), where teaH(2-) is the dianion of triethanolamine, are reported. 1 crystallizes in the tetragonal I4(1)/a space group [a = b = 33.519(4) A and c = 16.659(2) A]. 2 crystallizes in the monoclinic C2/c space group [a = 21.473(5), b = 26.819(6), c = 35.186(7), and beta = 93.447(5) degrees]. Both complexes consist of 8 Mn(II) and 8 Mn(III) ions alternating in a wheel-shaped topology with 12 monoprotonated triethanolamine ligands. Variable-temperature direct current (DC) magnetic susceptibility data were collected in 1 T, 0.1 and 0.01 T fields, and in the 1.8-300 K temperature range for 1 and 2. Variable-temperature variable-field DC magnetic susceptibility data were obtained in the 1.8-10 K and 0.1-5 T ranges and least-squares fitting of these reduced magnetization versus H/T data indicates a S = 13 ground-state for 1 and 2. Single-crystal magnetization hysteresis measurements were performed in a 0.04-1 K temperature range for complex 2. Hysteresis loops were observed that showed a temperature dependence, which indicates that 2 exhibits magnetization relaxation and is a SMM. Both 1 and 2 show frequency-dependent out-of-phase signals in the AC susceptibility measurements, collected in a temperature range of 1.8-5 K and in the frequency range of 50-10,000 Hz. Extrapolation of the in-phase component of the AC susceptibility data to 0 K indicates an S = 12 ground state for 1 and an S = 11 ground-state for 2. Complex 1 has the highest-spin ground state reported to date for a single-stranded manganese wheel and is likely to be an SMM based on a frequency-dependent out-of-phase signal in the AC susceptibility. The AC susceptibility as well as magnetization hysteresis data for 2 confirm that this species is an SMM.  相似文献   

20.
Additional members of the family of high- T c molecule-based magnets, V[acceptor] 2. yCH 2Cl 2 have been discovered in which the acceptor is a fluorophenyltricyanoethylene. Varying the number and position of the fluorine substitutions around the phenyl ring results in materials with significantly different magnetic ordering temperatures ( T c's) ranging from 160 to 300 K. Density functional theory calculations were performed on the neutral and anionic forms of the acceptors that reveal modest correlation between T c and three calculated quantities: the gas-phase electron affinity, the dihedral angle between the phenyl ring and the olefin, and the Mulliken spin densities on the nitrogen atoms. The electrochemistry of the acceptors has also been examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号