首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Compartmentalized molecular level design of new energetic materials based on energetic azolate anions allows for the examination of the effects of both cation and anion on the physiochemical properties of ionic liquids. Thirty one novel salts were synthesized by pairing diverse cations (tetraphenylphosphonium, ethyltriphenylphosphonium, N‐phenyl pyridinium, 1‐butyl‐3‐methylimidazolium, tetramethyl‐, tetraethyl‐, and tetrabutylammonium) with azolate anions (5‐nitrobenzimidazolate, 5‐nitrobenzotriazolate, 3,5‐dinitro‐1,2,4‐triazolate, 2,4‐dinitroimidazolate, 4‐nitro‐1,2,3‐triazolate, 4,5‐dinitroimidazolate, 4,5‐dicyanoimidazolate, 4‐nitroimidazolate, and tetrazolate). These salts have been characterized by DSC, TGA, and single crystal X‐ray crystallography. The azolates in general are surprisingly stable in the systems explored. Ionic liquids were obtained with all combinations of the 1‐butyl‐3‐methylimidazolium cation and the heterocyclic azolate anions studied, and with several combinations of tetraethyl‐ or tetrabutylammonium cations and the azolate anions. Favorable structure–property relationships were most often achieved when changing from 4‐ and 4,5‐disubstituted anions to 3,5‐ and 2,4‐disubstituted anions. The most promising anion for use in energetic ionic liquids of those studied here, was 3,5‐dinitro‐1,2,4‐triazolate, based on its contributions to the entire set of target properties.  相似文献   

2.
Porous/zeolitic metal azolate frameworks may be efficiently prepared, with water as the only byproduct, by heating a mixture of metal oxide/hydroxide and azole ligand.  相似文献   

3.
This tutorial review highlights recent and current advances in Os(II) and Ru(II) based luminescent complexes in view of their potential in providing models for photophysical properties and in serving as active materials in optoelectronic devices. It starts with a discussion of the fundamentals of pyridyl azolate chromophores and presents several prototypical designs that allow subtle variation of their basic properties. The third section of this article concerns the preparation of Os(II) and Ru(II) metal complexes and discusses the key factors that control their phosphorescence efficiencies and peak wavelengths. Attention is focused on the properties of their lowest lying excited states. In the last section, we present a series of related Os(II) complexes possessing pyridyl azolate, cyclometalated benzo[h]quinoline, beta-diketonates and quinolinates to demonstrate the power of fundamental basis to chemistry and theoretical approaches in rationalizing the corresponding photophysical behavior and hence to discuss the implications regarding their possible routes for future research.  相似文献   

4.
《Tetrahedron letters》1988,29(4):491-492
A facile entry into the almost unknown azolium azolate inner salts is described, and the structure of these highly dipolar compounds is well reflected by their spectroscopic properties and reactivity towards electrophiles (MeI) and dipolarophiles (DMAD) under mild conditions.  相似文献   

5.
Following an increasing interest in the gold drug therapy field, nine new neutral azolate gold(I) phosphane compounds have been synthesized and tested as anticancer agents. The azolate ligands used in this study are pyrazolates and imidazolates substituted with deactivating groups such as trifluoromethyl, nitro or chloride moieties, whereas the phosphane co-ligand is the triphenylphosphane or the more hydrophilic TPA (TPA = 1,3,5-triazaphosphaadamantane). The studied gold(I) complexes are: (3,5-bis-trifluoromethyl-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (1), (3,5-dinitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (2), (4-nitro-1H-pyrazolate-1-yl)-triphenylphosphane-gold(I) (5), (4,5-dichloro-1H-imidazolate-1-yl)-triphenylphosphane-gold(I) (7), with the related TPA complexes (3), (4), (6) and (8) and (1-benzyl-4,5-di-chloro-2H-imidazolate-2-yl)-triphenylphosphane-gold(I) (9). The presence of deactivating groups on the azole rings improves the solubility of these complexes in polar media. Compounds 1-8 contain the N-Au-P environment, whilst compound 9 is the only one to contain a C-Au-P environment. Crystal structures for compounds 1 and 2 have been obtained and discussed. Interestingly, the newly synthesized gold(I) compounds were found to possess a pronounced cytotoxic activity on several human cancer cells, some of which were endowed with cis-platin or multidrug resistance. In particular, among azolate gold(I) complexes, 1 and 2 proved to be the most promising derivatives eliciting an antiproliferative effect up to 70 times higher than cis-platin. Mechanistic experiments indicated that the inhibition of thioredoxin reductase (TrxR) might be involved in the pharmacodynamic behavior of these gold species.  相似文献   

6.
This review is aimed at updating the recent development on the metal complexes bearing azolate‐containing chelates that have received a growing attention from both the industrial and academic sectors. Particular emphasis is given to the luminescent metal complexes, for which tridentate and multidentate bonding interactions give rise to both higher ligand field strength and better rigidity versus their bidentate counterparts—consequently, this is beneficial to the chemical stability and emission efficiency needed for applications such as organic light‐emitting diodes and bio‐imaging. Their basic designs involve chelates, such as monoanionic 6‐azolyl 2,2′‐bipyridine, dianionic 2,6‐diazolylpyridine, and 2‐azolyl‐6‐phenylpyridine, and the core metal ion spanning from main group elements, such as GaIII and InIII, to the late transition metal ions such as RuII, OsII, IrIII, and PtII and even the lanthanides. Furthermore, the great versatility of these azolate chelates for assembling the robust and emissive metal complexes, provides bright prospect in future optoelectronic investigations.  相似文献   

7.
Twenty-eight novel salts with tetramethyl-, tetraethyl-, and tetrabutylammonium and 1-butyl-3-methylimidazolium cations paired with 3,5-dinitro-1,2,4-triazolate, 4-nitro-1,2,3-triazolate, 2,4-dinitroimidazolate, 4,5-dinitroimidazolate, 4,5-dicyanoimidazolate, 4-nitroimidazolate, and tetrazolate anions have been prepared and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the physicochemical properties of the resulting salts, including several ionic liquids, have been examined and discussed. Ionic liquids (defined as having m.p.<100 degrees C) were obtained with all combinations of the 1-butyl-3-methylimidazolium cation ([C(4)mim](+)) and the heterocyclic azolate anions studied, and with several combinations of tetraethyl or tetrabutylammonium cations and the azolate anions. The [C(4)mim](+) azolates were liquid at room temperature exhibiting large liquid ranges and forming glasses on cooling with glass-transition temperatures in the range of -53 to -82 degrees C (except for the 3,5-dinitro-1,2,4-triazolate salt with m.p. 33 degrees C). Six crystal structures of the corresponding tetraalkylammonium salts were determined and the effects of changes to the cations and anions on the packing of the structure have been investigated.  相似文献   

8.
Treatment of Ba[N(SiMe3)2]2(THF)2 with 2 equiv of dimethylaminotetrazole or diisopropylaminotetrazole and 1 equiv of 18-crown-6 afforded Ba[CN4(NMe2)]2(18-crown-6) (87%) and Ba[CN4(NiPr2)]2(18-crown-6) (79%) as colorless crystalline solids. Ba[CN4(NMe2)]2(18-crown-6) contains two 1,2-eta2-tetrazolato ligands and one eta6-18-crown-6 ligand. The molecular structure of Ba[CN4(NiPr2)]2(18-crown-6) is similar to that of Ba[CN4(NMe2)]2(18-crown-6), except that the tetrazolato ligands exhibit the isomeric 2,3-eta2-coordination mode and the tetrazolato ligand CN4 cores are bent significantly toward the 18-crown-6 ligands. Molecular orbital calculations were carried out on the model complexes Ba(azolate)2(18-crown-6) (azolate = 1,2-eta2-CHN4, 2,3-eta2-CHN4, and eta2-N5) and demonstrate that the ligand coordination modes are influenced by intramolecular interactions between filled nitrogen orbitals on the azolato ligands and empty C-H sigma* orbitals on the 18-crown-6 ligands.  相似文献   

9.
The formation of azole-containing polymers via nucleophilic substitution of a halogen in poly(vinyl halides) with an azole group with the use of salts of different azoles as reagents has been investigated. The maximal degree of azolation is achieved via the interaction of polymer substrates with the sodium salt of 4-nitro-1,2,3-triazole. Simultaneously with substitution of the halogen with the azole fragment, dehydrohalogenation inevitably proceeds under reaction conditions. The intensity of both processes substantially depends on the basicity of an azolate anion, temperature, and reaction duration.  相似文献   

10.
MnIII is a powerful active site for catalytic oxidation of alkyl aromatics, but it can be only stabilized by macrocyclic chelating ligands such porphyrinates. Herein, by using benzobistriazolate as a rigid bridging ligand, a porous MnII azolate framework with a nitrogen‐rich coordinated environment similar to that of metalloporphyrins was synthesized, in which the MnII ions can be post‐oxidized to MnIII to achieve drastic increase of catalytic (aerobic) oxidation performance.  相似文献   

11.
High level ab initio calculations have been used to study the relative stability of N-sigma and pi configurations of the neutral alkaline derivatives of azoles. The N-sigma structure is the one normally expected for nonionized azolate salts. However, the results show that in the case of the pyrrole and imidazole the pi configuration is more stable than the N-sigma one. The preference of the N-sigma vs pi configurations is related to the presence or the absence of two contiguous nitrogen atoms in the azole ring. A search in the CSD shows that some pyrrolate and imidazolate salts exist in solid phase in the pi configuration.  相似文献   

12.
Arylazoimidazoles (2) are N,N-chelating ligands. The polymerization trend of the azolate system is restricted via N(1)-benzylation. The parent molecules (2), N(1)-benzylated products (3) and palladium complexes (4) were made by standard methods. The ligands (3) and complexes (4) are new. They have been characterized by elemental analysis, i.r., u.v.-vis. and high resolution 1H-n.m.r. spectral data. Redox studies were carried out by cyclic voltammetry. On complexation, azo reduction is shifted anodically.  相似文献   

13.
Reactions of pyrrole, imidazole, pyrazole, and 1,2,4-triazole with allene and propyne in the gas phase with formation of the corresponding N-isopropenylazoles were simulated at the RHF/6-31G**, B3LYP/6-31G**, and MP2(full)/6-31G** levels. Dissociation of the N-H bond to give azolate ion is the main constituent of the reaction coordinate. All the examined azoles react preferentially with allene rather than with propyne; their reactivity decreases in the series pyrrole > imidazole > pyrazole > 1,2,4-triazole due to participation of the pyridine type nitrogen atoms in the prototropic propyne-allene rearrangement.  相似文献   

14.
The ethanol/water separation challenge highlights the adsorption capacity/selectivity trade-off problem. We show that the target guest can serve as a gating component of the host to block the undesired guest, giving molecular sieving effect for the adsorbent possessing large pores. Two hydrophilic/water-stable metal azolate frameworks were designed to compare the effects of gating and pore-opening flexibility. Large amounts (up to 28.7 mmol g−1) of ethanol with fuel-grade (99.5 %+) and even higher purities (99.9999 %+) can be produced in a single adsorption process from not only 95 : 5 but also 10 : 90 ethanol/water mixtures. More interestingly, the pore-opening adsorbent possessing large pore apertures showed not only high water adsorption capacity but also exceptionally high water/ethanol selectivity characteristic of molecular sieving. Computational simulations demonstrated the critical role of guest-anchoring aperture for the guest-dominated gating process.  相似文献   

15.
Pyridinylazolato (N–N′) ruthenium(II) complexes of the type [(N–N′)RuCl(PMe3)3] have been obtained in high yields by treating the corresponding functionalised azolylpyridines with [RuCl2(PMe3)4] in the presence of a base. 15N NMR spectroscopy was used to elucidate the electronic influence of the substituents attached to the azolyl ring. The findings are in agreement with slight differences in the bond lengths of the ruthenium complexes. Furthermore, the electronic nature of the azolate moiety modulates the catalytic activity of the ruthenium complexes in the hydrogenation of carbon dioxide under supercritical conditions and in the transfer hydrogenation of acetophenone. DFT calculations were performed to shed light on the mechanism of the hydrogenation of carbon dioxide and to clarify the impact of the electronic nature of the pyridinylazolate ligands.  相似文献   

16.
Hsu FC  Tung YL  Chi Y  Hsu CC  Cheng YM  Ho ML  Chou PT  Peng SM  Carty AJ 《Inorganic chemistry》2006,45(25):10188-10196
Triosmium cluster complexes [Os3(CO)8(fppz)2] (2a) and [Os3(CO)8(fptz)2] (2b) bearing two 2-pyridyl azolate ligands were synthesized in an attempt to establish the reaction mechanism that gives rise to the blue-emitting phosphorescent complexes [Os(CO)2(fppz)2] (1a) and [Os(CO)2(fptz)2] (1b) [(fppz)H = 3-(trifluoromethyl)-5-(2-pyridyl)pyrazole; (fptz)H = 3-(trifluoromethyl)-5-(2-pyridyl)triazole]. X-ray structural analysis of 2b showed an open triangular metal framework incorporating multisite-coordinated 2-pyridyltriazolate ligands. Treatment of 2 with the respective 2-pyridylazolate ligand led to the formation of blue-emitting complex 1b, confirming their intermediacy, while the reaction of 2b with phosphine ligand PPh2Me afforded two hitherto novel hydride complexes 3 and 4, for which the reversible interconversion was clearly established at higher temperatures (> 180 degrees C). The single-crystal X-ray diffraction analyses of 3 and 4 confirmed their monometallic and isomeric nature, together with the coordination of two phosphine ligands located in the trans-disposition and one CO and one hydride located opposite to the pyridyl triazolate chelate. Subtle differences in photophysical properties were examined for isomers 3 and 4 on the basis of steady state absorption and emission, the relaxation dynamics, and temperature-dependent luminescent studies. The results, in combination with time-dependent density function theory (TDDFT) calculations, provide fundamental insights into the future design and preparation of highly efficient phosphorescent emitters.  相似文献   

17.
Owing to their ease of synthesis, diffuse positive charge, and chemical stability, 1-alkyl-3-methylimidazolium cations (i.e., [Cnmim]+) are one of the most routinely utilized and historically important components in ionic liquid (IL) chemistry. However, while this is a routinely encountered member of the IL family as cations, relatively few workers have explored the versatile chemistry of azoles to allow their use as an anionic component in ILs, as azolates. Azolate anions possess many of the desired properties for IL formation, including a diffuse ionic charge, tailorable asymmetry, and synthetic flexibility, with the added advantages of not relying on halogen atoms for electron-withdrawing effects, as is commonly encountered with IL anions such as hexafluorophosphate. This review explores the 122 azolate-containing ILs known in the literature (prepared from only 39 disparate azolate anions), with a view to highlighting not only their demonstrated utility as an IL component, but the ways in which the larger scientific community may utilize their advantageous properties for new tailored materials.  相似文献   

18.
《中国化学会会志》2017,64(6):574-588
This review is aimed at the current research progression of a unique class of Pt(II ) metal complexes bearing at least one azolate‐containing bidentate chelate. The azole fragment can link to a neutral heteroaromatic entity or another azole and form bidentate chelates, such as monoanionic 3‐pyridyl‐1H ‐pyrazole and derivatives, dianionic 3,3′‐bi‐1H ‐pyrazole, 3,3′‐(1‐methylethylidene)‐bis‐1H ‐pyrazole, and their analogs. These azole‐containing chelates readily react with a variety of Pt(II) reagents to afford the corresponding bis‐bidentate Pt(II) complexes. Most of them were highly emissive in solution, doped polymer matrix, thin film, and even as crystal or powder, due to the high ligand field strength exerted by these chelates and their high propensity in forming the singular square‐planar architecture and intermolecular aggregates with substantially strengthened Pt⋯Pt interaction, according to their structural design. Therefore, they hold bright prospects in academic research and future optoelectronic applications such as organic light‐emitting diodes.  相似文献   

19.
Different from the conventional synthesis approaches, such as hydrothermal or solvothermal synthesis, a porous metal azolate framework encapsulating Keggin‐type [SiW12O40]4? anions was prepared by an environmentally friendly, low‐cost, and highly efficient steam‐assisted conversion method for the first time. The nanosized polyoxometalates as a template were encapsulated by a zeotype 6448 cage constructed by 28 nuclear zinc atoms connected through 32 Trz ligands. The obtained composite exhibits excellent thermal and chemical stability; meanwhile, its special ability to selectively absorb water from alcohols makes it efficiently separate water from analytically pure ethanol, with the result that water content decreases from 0.23 to 0.05 wt %, which is superior to the standard of chromatographic grade ethanol (<0.1 wt %). Besides, alternating current (ac) impedance experiments also reveal that the hybrid is a kind of proton conductive material.  相似文献   

20.
The hydroxo-complexes [{PdR(PPh3)(μ-OH)}2] (R = C6F5 or C6Cl5) have been obtained by reaction of the corresponding [{PdR(PPh3)(μ-Cl)}2] complexes with NBu4OH in acetone. In this solvent, the reaction of the hydroxo-bridged complexes with pyrazole (Hpz) and 3,5-dimethylpyrazole (Hdmpz) in 1:2 molar ratio leads to the formation of the new complexes [{Pd(C5F5)(PPh3)(μ-azolate)}2] and [{Pd(C6Cl5)(PPh3)}2(μ-OH)(μ-azolate)] (azolate = pz or dmpz). The reaction of the bis(μ-hydroxo) complexes with Hpz and Hdmpz in acetone in 1:1 molar ratio has also been studied, and the resulting product depends on the organic radical (C6F5 or C6Cl5) as well as the azolate (pz or dmpz). The identity of the isomer obtained has been established in every case by NMR (1H, 19F and 31P) spectroscopy. The reaction of the bis(μ-hydroxo) complexes with oxalic (H2Ox) and acetic (HOAc) acids yields the binucle ar complexes [{PdR(PPh3)}2(μ-Ox)] (R = C6F5 or C6Cl5) and [{Pd(C6F5)(PPh3)(μ-OAc)}2], respectively. [{Pd(C6F5)(PPh3)(μ-OH)}2] reacts with PPh3 in acetone in 1:2 ratio giving the mononuclear complex trans-[Pd(C6F5) (OH)(PPh3)2], whereas the pentachlorophenylhydroxo complex does not react with PPh3, even under forcing conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号