首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper density, sound velocity, and refractive index for the binary system (butyric acid + hexanoic acid) were measured over the entire composition range and at 5 K intervals in the temperature range 293.15–313.15 K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, deviation in refractive indices, molar refractions, and deviation in molar refractions were calculated by using the experimental densities, sound velocities, and refractive indices, respectively. The Redlich–Kister equation was used to fit the excess molar volume, excess isentropic compressibility, deviation in refractive index and deviation in molar refraction data. The Lorentz–Lorenz approximation was used to correlate the excess molar volume from the deviation in refractive index and also to predict the density from refractive index or the refractive index from density of the binary mixtures. Four sound velocity mixing rules were tested and the best model for the systems studied in this work was the Berryman mixing rule. The thermodynamic properties are discussed in terms of intermolecular interactions between the components of the mixtures.  相似文献   

2.
The densities, refractive indexes, and sound velocities for mixtures of ethanol + methanol + dibutyl ether at 25°C and atmospheric pressure, were determined and used to calculate molar volumes, molar refractions, and isentropic compressibilities. The excess molar volumes and the deviations of molar refractions and isentropic compressibilities from mole fraction and volume fraction averages, respectively, of these properties of the pure components were satisfactorily correlated with the composition data by means of the Redlich–Kister polynomial.  相似文献   

3.
Mixing properties of the ternary mixture acetone + methanol + n-octane have been determined experimentally under standard conditions. Sound velocity, densities, and refractive indexes were measured as functions of composition. Excess molar volumes, changes of refractive indexes, and changes of isentropic compressibilities on mixing were computed from the experimental data. The Peng–Robinson and Soave–Redlich–Kwong equations of state were applied with three different mixing rules to correlate binary excess volumes and then to predict the excess magnitudes in ternary mixtures. Reliable representations of the experimental data were obtained.  相似文献   

4.
Abstract

This work reports values of the density, refractive index and speed of sound of the binary mixtures acetone or methanol with (2-methyl, 1-propanol, 3-methyl, 1-butanol, 1,2-ethanediol, 1,2-propanediol and 1,3-propanediol) at 298.15 K and atmosphere, as a function of the mole fraction. From the experimental values, the corresponding excess and derived magnitudes were computed (excess molar volumes, changes of refractive index on mixing and changes of isentropic compressibility on mixing), variable-degree polynomials being fitted to the results. Only expansive trend was observed for those mixtures enclosing branched alcohols. The influence of the hydroxil group in the nonideal behaviour of these mixtures were analyzed in terms of the partial molar excess volumes.  相似文献   

5.
Excess molar volumes, excess molar enthalpies and speeds of sound of 1-methyl pyrrolidin-2-one?+?o- or m- or p-xylene binary mixtures have been measured over the entire composition range at 308.15?K. The speed of sound data were used to determine the excess isentropic compressibilities. It is observed that while the values of the excess molar enthalpies for the investigated mixtures are positive, the values of the excess molar volumes and excess isentropic compressibilities are negative over the entire composition range. The measured thermodynamic data have been analyzed in terms of Graph, Prigogine?CFlory?CPatterson, and the Sanchez and Lacombe theories. It is observed that Graph theory correctly predicts the signs and magnitudes of the excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities of the studied mixtures. However, the excess molar volumes, excess molar enthalpies and excess isentropic compressibilities predicted by Prigogine?CFlory?CPatterson and Sanchez and Lacombe theories are of same sign.  相似文献   

6.
Speeds of sound and densities of glycerol + methanol, glycerol + ethanol and glycerol + 2-propanol, were measured over the entire composition range at 298.15 K. The excess volumes, the isentropic compressibilities, molar isentropic compressibilities and excess molar isentropic compressibilities and excess speeds of sound were estimated from the densities and speeds of sound. The results indicated the presence of interactions between unlike molecules through intermolecular hydrogen bonding. The excess volumes, excess molar isentropic compressibilities and excess speeds of sound of the binary mixtures were fitted to the Redlich–Kister equation. The infrared spectra of glycerol + methanol, glycerol + ethanol and glycerol + 2-propanol have been recorded for various concentrations at room temperature. IR stretching frequencies, bandwidths and relative intensities have been estimated and analysed. Acoustic and spectroscopic measurements showed a good correlation to explain the existence of interactions between unlike molecules through intermolecular hydrogen bonding.  相似文献   

7.
《Fluid Phase Equilibria》1999,154(1):123-138
Excess molar volumes, changes of refractive indices, and changes of isentropic compressibilities of the ternary mixture benzene (1)+cyclohexane (2)+2-methyl-2-butanol (3), and the corresponding binary mixtures benzene (1)+2-methyl-2-butanol (3), and cyclohexane (2)+2-methyl-2-butanol (3) have been evaluated from density, refractive index, and speed of sound measurements at 298.15 K, and atmosphere. These derived properties of binary, and ternary mixtures were fitted to Redlich–Kister, and Nagata equations, respectively, the correlation parameters being gathered. In spite of the high non-ideality observed, the excess molar volumes were satisfactorily predicted by means of cubic equations of state with simple mixing rules.  相似文献   

8.
《Fluid Phase Equilibria》2002,202(2):385-397
Densities, speeds of sound and heats of mixing for the ternary system cyclohexane + 1,3-dioxolane + 1-butanol have been measured at atmospheric pressure at the temperatures of 298.15 and 313.15 K. Excess molar volumes, excess isentropic compressibilities and excess molar enthalpies have been calculated from experimental data and fitted by Cibulka equation. Excess molar properties were analysed in terms of molecular interactions and structural and packing effects.  相似文献   

9.
《Fluid Phase Equilibria》2003,211(1):61-73
Densities, speeds of sound and heats of mixing for the ternary system hexane+1,3-dioxolane+1-butanol have been measured at atmospheric pressure at the temperatures of 298.15 and 313.15 K. Excess molar volumes, excess isentropic compressibilities, and excess molar enthalpies have been calculated from experimental data and fitted by Cibulka equation. Excess molar properties were analysed in terms of molecular interactions as well as structural and packing effects.  相似文献   

10.
In this work we present experimental values of the density, refractive index, speed of sound, isentropic compressibility and liquid-liquid equilibria of the binary mixtures (methyl acetate, ethyl acetate, propyl acetate, and butyl acetate) with (1,2-ethanediol, 1,2-propanediol, or 1,3-propanediol) at 298.15 K and atmospheric pressure, as a function of mole fraction. From the experimental values, the corresponding excess and deviation values were computed (excess molar volumes, changes of refractive index on mixing, and changes of isentropic compressibility), variable-degree polynomials being fitted to the results. The validity of different estimation methods for predicting the experimental values of physical properties was tested. The limiting partial excess molar volume of the components in each binary mixture was determined by means of predetermined Redlich-Kister parameters. Group contribution method (UNIFAC-Dortmund) was applied in order to compare their capability in predicting the experimental equilibria values. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
Density, speed of sound, and refractive index for the binary systems (butanoic acid + propanoic acid, or 2-methyl-propanoic acid) were measured over the whole composition range and at T = (293.15, 298.15, 303.15, 308.15, and 313.15) K. The excess molar volumes, isentropic compressibilities, excess isentropic compressibilities, molar refractions, and deviation in refractive indices were also calculated by using the experimental densities, speed of sound, and refractive indices data, respectively. The Redlich–Kister smoothing polynomial equation was used to fit the excess molar volume, excess isentropic compressibility and deviation in refractive index data. The thermodynamic properties have been discussed in terms of intermolecular interactions between the components of the mixtures.  相似文献   

12.
Densities, speeds of sound and refractive indices have been measured for (n -hexane  +  cyclohexane  +  1-hexanol) and its corresponding binaries atT =  298.15 K. In addition, ideal isentropic compressibilities were calculated from the speeds of sound, densities, and literature heat capacities and cubic expansion coefficients. The excess molar volumes and excess isentropic compressibilities, and deviations of the speed of sound and refractive index are correlated by polynomials and discussed.The Nitta–Chao model was used to estimate binary and ternary excess molar volumes, and several empirical equations were also used to calculate the excess and deviation properties.  相似文献   

13.
Mixtures of tetralin (1,2,3,4-tetrahydronaphthalene), an aromatic cyclic molecule, and n-decane present asymmetries in chemical nature, shape, and chain length, and are frequently found, e.g., in naphtha or kerosene fractions. Aiming at understanding the impact of these asymmetries on some thermophysical properties, this work presents densities, sound velocities, and refractive indexes for this binary system along with the properties of the pure components at T = (293.15, 303.15, 313.15, 323.15, 333.15, and 343.15) K over whole composition range and atmospheric pressure. From these data, the following derived properties were obtained: isentropic compressibility, molar refractivity, excess volume, excess isentropic compressibility, molar refractivity deviations, and thermal expansion coefficient. Several sound velocity mixing rules were tested, and the best result was for Nomoto mixing rule. Pure component densities and sound velocities were correlated with Prigogine–Flory–Patterson (PFP) model. The binary interaction parameter for this model was obtained from correlation of excess volumes and isentropic compressibilities. This model correlated experimental densities very well and correlated reasonably well sound velocities and thermal expansion coefficient.  相似文献   

14.
Densities and speeds of sound for the ternary system 1-butanol+1,4-dioxane+cyclohexane have been measured at the temperatures of 298.15 and 313.15 K. Excess molar volumes and excess isentropic compressibilities have been calculated from experimental data and fitted by the Redlich-Kister equation for ternary mixtures. The ERAS model has been used to calculate excess molar volumes of the ternary mixture from parameters obtained from the constituent binary mixtures.  相似文献   

15.
Densities and kinematic viscosities have been measured for (1-butanol + 1,4-butanediol) over the temperature range from (298.15 to 318.15) K. The speeds of sound within the temperature range from (293.15 to 318.15) K have been measured as well. Using these results and literature values of isobaric heat capacities, the molar volumes, isentropic and isothermal compressibility coefficients, molar isentropic and isothermal compressibilities, isochoric heat capacities as well as internal pressures were calculated. Also the corresponding excess and deviation values (excess molar volumes, excess isentropic and isothermal compressibility coefficients, excess molar isentropic and isothermal compressibilities, different defined deviation speed of sound and dynamic viscosity deviations) were calculated. The excess values are negative over the whole concentration and temperature range. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of the variations of the structure of the system caused by the participation of the two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding at various temperatures. The predictive abilities of Grunberg–Nissan and McAllister equations for viscosities of mixtures have also been examined.  相似文献   

16.
Density, speed of sound and refractive index values of (diethyl carbonate  + n -decane), were measured at the temperatures (288.15, 293.15, 298.15, and 308.15) K and atmospheric pressure. In addition, dielectric permittivities have been measured for the same mixture and at the same temperatures except at T =  293.15 K. Excess molar volumes, changes of isentropic compressibility on mixing, changes of refractive index on mixing and changes of dielectric permittivity on mixing were computed from the experimental data. The excess molar volumes were compared with predictions from the Nitta–Chao model.  相似文献   

17.
Densities and kinematic viscosities have been measured for (1,2-ethanediol + 1-nonanol) over the temperature range from (298.15 to 313.15) K. The speeds of sound in those mixtures within the temperature range from (293.15 to 313.15) K have been measured as well. Using the measurement results, the molar volumes, isentropic compressibility coefficients, molar isentropic compressibilities, and the corresponding excess and deviation values (excess molar volumes, excess isentropic compressibility coefficients, excess molar isentropic compressibilities, differently defined deviations of the speed of sound, and dynamic viscosity deviations) were calculated. The excess Gibbs free energies estimated by the use of the UNIQUAC model are also reported. The excess molar volumes and Gibbs free energies are positive, whereas the compressibility excesses are s-shaped. The excess and deviation values are expressed by Redlich–Kister polynomials and discussed in terms of variations of the structure of the system caused by the participation of two different alcohol molecules in the dynamic intermolecular association process through hydrogen bonding. The effect of temperature is discussed. The predictive abilities of the McAllister equation for viscosities of the mixtures under test have also been examined.  相似文献   

18.
The speed of sound was measured for mixtures of p-dioxane with cyclohexane, n-hexane, benzene, toluene, carbon tetrachloride, chloroform, 1,1,2,2-tetrachloroethane, pentachloroethane and ethyl acetate over the whole mole fraction range at 30°C. These data were combined with densities and molar volumes to obtain isentropic compressibilities and Rao's molar sound functions. Excess isentropic compressibilities and excess speeds of sound have also been calculated. The behavior of the present mixtures is discussed in terms of possible molecular interactions and the Prigogine-Flory-Patterson theory of liquid mixtures.  相似文献   

19.
Densities and sound velocities of binary mixtures of cyclohexanone, 2-butanone, 1,4-dioxane and 1,2-dimethoxyethane were measured at 298.15 K and also the densities at 303.15 K. Excess volumes were determined from densities. Isentropic compressibilities were determined from densities and sound velocities, and excess thermal expansion factors were determined from excess volumes of two temperatures. Excess isothermal compressibilities and excess isochoric heat capacities were then estimated using excess isobaric heat capacities previously reported. Excess volumes and excess isentropic and isothermal compressibilities were negative except for cyclohexanone+1,4-dioxane system. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
The densities (ρ), ultrasonic speeds (v), and refractive indices (n) of binary mixtures of styrene (STY)with m-, o-, or p-xylene, including those of their pure liquids, were measured over the entire composition range at the temperatures 298.15, 303.15, 308.15, and 313.15 K. The excess volumes (VE), deviations in isentropic compressibilities(△ks), acoustic impedances (△Z), and refractive indices (△n) were calculated from the experimental data. Partial molar volumes (V0φ,2) and partial molar isentropic compressibilities (K0φ,2) of xylenes in styrene have also been calculated. The derived functions, namely, VE, △ks, △Z, △n, V0φ,2, and K0φ,2 were used to have a better understanding of the intermolecular interactions occurring between the component molecules of the present liquid mixtures. The variations of these parameters suggest that the interactions between styrene and o-, m-, or p-xylene molecules follow the sequences: p-xylene>o-xylene>m-xylene. Apart from using density data for the calculation of VE, excess molar volumes were also estimated using refractive index data. Furthermore, several refractive index mixing rules have been used to estimate the refractive indices of the studied liquid mixtures theoretically. Overall, the computed and measured data were interpreted in terms of interactions between the mixing components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号