首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
用高温固相反应法合成了铌酸根NbO^3-4和Eu^3 共掺杂的正钽酸盐化合物Y1-xEuxTa1-yNbyO4,研究该体系中紫外光和X射线激发下的发光性能,研究表明,在紫外光激发下,YTaO4:Nb,Eu是一种比较有效的红色发光材料,激发能可以通过NbO^3 4离子传递给Eu^3 ,随钽酸盐中NbO^3-4基团浓度的增中,化合物的结构从M'型YTaO4变成褐钇铌型YNbO4结构,它的发光性质也随之改变。  相似文献   

2.
Pr3+-doped perovskites R1/2Na1/2TiO3:Pr (R=La, Gd, Lu, and Y) were synthesized, and their structures, optical absorption and luminescent properties were investigated, and the relationship between structures and optical properties are discussed. Optical band gap of R1/2Na1/2TiO3 increases in the order R=La, Gd, Y, and Lu, which is primarily due to a decrease in band width accompanied by a decrease in Ti-O-Ti bond angle. Intense red emission assigned to f-f transition of Pr3+ from the excited 1D2 level to the ground 3H4 state upon the band gap photo-excitation (UV) was observed for all compounds. The wavelength of emission peaks was red-shifted in the order R=La, Gd, Y, and Lu, which originates from the increase in crystal field splitting of Pr3+. This is attributed to the decrease in inter-atomic distances of Pr-O together with the inter-atomic distances (R, Na)-O, i.e., increase in covalency between Pr and O. The results indicate that the luminescent properties in R1/2Na1/2TiO3:Pr are governed by the relative energy level between the ground and excited state of 4f2 for Pr3+, and the conduction and valence band, which is primarily dependent on the structure, e.g., the tilt of TiO6 octahedra and the Pr-Ti inter-atomic distance and the site symmetry of Pr ion.  相似文献   

3.
The photocatalytic activities of R3MO7 and R2Ti2O7 (R=Y, Gd, La; M=Nb, Ta) strongly depended on the crystal structure. Overall, photocatalytic water splitting into H2 and O2 proceeded over La3TaO7 and La3NbO7, which have an orthorhombic weberite structure, Y2Ti2O7 and Gd2Ti2O7, which have a cubic pyrochlore structure, and La2Ti2O7, which has a monoclinic perovskite structure. All of these materials are composed of a network of corner-shared octahedral units of metal cations (TaO6, NbO6, or TiO6); materials without such a network were inactive. The octahedral network certainly increased the mobility of electrons and holes, thereby enhancing photocatalytic activity.  相似文献   

4.
用高温固相法合成了系列化合物RE0.06La0.94M2O6Br(M=Nb,Ta;RE=Eu,Tb,Pr,Sm),并测定了其激发和发射光谱,室温下Eu3+、Tb3+、Pr3+、Sm3+在稀土-铌(钽)复合溴氧化物中呈现特征激发谱线,但Nb和Ta的光谱特性稍有不同。  相似文献   

5.
The emission and excitation spectra of Ce(3+) and Pr(3+) doped into the cubic host Cs(2)NaYF(6) have been recorded at room temperature and ~10 K using synchrotron radiation. The two 5d(1) T(2g) states of Ce(3+) have been located from the excitation spectra, whereas the E(g) state is placed above the host band gap. Decay measurements of the 5d(1) → 4f(1) Ce(3+) emission, and spectra collected using selective excitation, indicate the occupation of more than one type of site by Ce(3+) in this host lattice. By contrast, the location of features in the 4f(1)5d(1) → 4f(2) emission of Pr(3+) is independent of the excitation wavelength. Assignments are presented for some of the 4f(1)5d(1) levels and for the Pr(3+)-F(-) charge transfer band. The 5d emission lifetimes for Ce(3+) and Pr(3+) in the Cs(2)NaYF(6) host are 42 and 29 ± 1 ns, respectively, and are not temperature-dependent.  相似文献   

6.
Two new isostructural tellurites, Pb(4)Te(6)M(10)O(41) (M = Nb(5+) or Ta(5+)), have been synthesized by standard solid-state techniques using PbO, Nb(2)O(5) (or Ta(2)O(5)), and TeO(2) as reagents. The structures of Pb(4)Te(6)Nb(10)O(41) and Pb(4)Te(6)Ta(10)O(41) were determined by single-crystal and powder X-ray diffraction. The materials exhibit a three-dimensional framework consisting of layers of corner-shared NbO(6) octahedra connected by TeO(3) and PbO(6) polyhedra. The Nb(5+), Te(4+), and Pb(2+) cations are in asymmetric coordination environments attributable to second-order Jahn-Teller effects. The Nb(5+) cations undergo an intraoctahedral distortion either toward a face or a corner, whereas the Te(4+) and Pb(2+) cations are in distorted environments attributable to their lone pair. In addition, the TeO(3) polyhedra strongly influence the direction of the Nb(5+) intraoctahedral distortion. Infrared and Raman spectroscopy, thermogravimetric analysis, and dielectric measurements are also presented. Crystal data: Pb(4)Te(6)Nb(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.412(3) A, b = 20.114(3) A, c = 7.5008(10) A, beta = 99.630(4) degrees, V = 3482.4(8) A(3), and Z = 4; Pb(4)Te(6)Ta(10)O(41), monoclinic, space group C2/m (No. 12), with a = 23.340(8) A, b = 20.068(5) A, c = 7.472(2) A, beta = 99.27(3) degrees, V = 3453.8(2) A(3), and Z = 4.  相似文献   

7.
Gas-phase reactions of Ta(2+) and TaO(2+) with oxidants, including thermodynamically facile O-atom donor N(2)O and ineffective donor CO, as well as intermediate donors C(2)H(4)O (ethylene oxide), H(2)O, O(2), CO(2), NO, and CH(2)O, were studied by Fourier transform ion cyclotron resonance mass spectrometry. All oxidants reacted with Ta(2+) by electron transfer yielding Ta(+), in accord with the high second ionization energy of Ta (ca. 16 eV). TaO(2+) was also produced with N(2)O, H(2)O, O(2), and CO(2), oxidants with ionization energies above 12 eV; CO reacted only by electron transfer. The following charge separation products were also observed: TaN(+) and TaO(+) with N(2)O; and TaO(+) with O(2), CO(2), and CH(2)O. TaOH(2+), formed with H(2)O, reacted with a second H(2)O by proton transfer. TaO(2+) abstracted an electron from N(2)O, H(2)O, O(2), CO(2), and CO. Oxidation of TaO(2+) by N(2)O was also observed to produce TaO(2)(2+); on the basis of density functional theory (DFT) results, this species is a dioxide, {O-Ta-O}(2+). TaO(2)(2+) reacted by electron transfer with N(2)O, CO(2), and CO to give TaO(2)(+). Additionally, it was found that TaO(2)(2+) oxidizes CO to CO(2) and that it acts as a catalyst in the oxidation of CO by N(2)O. TaO(2)(2+) also activates H(2) to form TaO(2)H(2+). On the basis of the rates of electron transfer from N(2)O, CO(2), and CO to Ta(2+), TaO(2+), and TaO(2)(2+), the following estimates were made for the second ionization energies of Ta, TaO, and TaO(2): IE[Ta(+)] = 15.8 ± 0.3 eV, IE[TaO(+)] = 16.0 ± 0.5 eV, and IE[TaO(2)(+)] = 16.9 ± 0.4 eV. These IEs, together with recently reported bond dissociation energies, D[Ta(+)-O] and D[OTa(+)-O], result in the following bond energies: D[Ta(2+)-O] = 657 ± 58 kJ mol(-1) and D[OTa(2+)-O] = 500 ± 63 kJ mol(-1), the first of which is in good agreement with the value obtained by DFT.  相似文献   

8.
Three oxygen-containing gas-phase diatomic trications ReO(3+), NbO(3+) and HfO(3+) as well as the diatomic tetracation NbO(4+) have been observed by mass spectrometry at non-integer m/z values. These unusual triply charged molecular ion species, together with the corresponding diatomic dications ReO(2+), NbO(2+) and HfO(2+), were produced by energetic, high-current oxygen ((16)O(-)) ion beam sputtering of rhenium, niobium and hafnium metal samples, respectively, whose surfaces were dynamically oxidized by oxygen primary ion incorporation. In addition, NbO(z+) (z≤ 4) were generated by intense femtosecond laser excitation and photofragmentation (Coulomb explosion) of Nb(x)O(y) clusters and were detected through Time-of-Flight Mass Spectrometry (TOF). Our experimental results confirm previous reports on the detection of NbO(4+), NbO(3+), NbO(2+), HfO(3+) and HfO(2+) with Atom Probe mass spectrometry, whereas ReO(3+) and ReO(2+) apparently had not been observed before. In addition, these multiply charged molecular ions have been studied theoretically for the first time. Ab initio calculations of their electronic structures show that the diatomic trications ReO(3+), NbO(3+) and HfO(3+) are long-lived metastable gas-phase species, with bond lengths of 1.61 ?, 1.62 ? and 1.86 ?, respectively. They present large potential barriers with respect to dissociation of more than 2.7 eV. The corresponding diatomic dications are thermochemically stable molecules with very large dissociation energies (>3.5 eV). Our calculations predict the diatomic tetracation ReO(4+) to be a metastable ion species in the gas phase. We compute a potential barrier toward fragmentation of 0.6 eV; its formation requires a quadruple adiabatic ionization energy of 85.7 eV. Even though our calculations show that NbO(4+) is a weakly bound (dissociation barrier ~0.1 eV) metastable molecule, it is here identified via linear time-of-flight mass spectrometry.  相似文献   

9.
The title compounds were synthesized and studied by solution and single-crystal absorption, luminescence, and excitation spectroscopy. The f-f luminescence is induced in the Tm(3+) and Yb(3+) complexes in solution by exciting into the (1)Pi-(1)Pi absorptions of the ligand in the UV. A single-configurational coordinate model is proposed to rationalize the nonradiative relaxation step from ligand-centered to metal-centered excited states in [Yb(dpa)(3)](3-) (dpa = 2,6-pyridinedicarboxylate). Direct f-f excitation is used in crystals of Na(3)[Tm(dpa)(3)].13H(2)O and Na(3)[Yb(dpa)(3)].13H(2)O to induce f-f luminescence. From low-temperature, high-resolution absorption, luminescence, and excitation spectra, the ligand-field splittings in the relevant states can be determined. It was impossible to induce NIR to VIS upconversion in any of the complexes. This is mainly due to the fact that nonradiative relaxation among the f-f excited states is highly competitive, even in [Yb(dpa)(3)](3-) with an energy gap between (2)F(5/2) and (2)F(7/2) of about 10000 cm(-1). It can be rationalized on the basis of an adapted energy gap law. No luminescence at all could be detected in Na(3)[Er(dpa)(3)].13H(2)O.  相似文献   

10.
We have synthesized new, efficient, visible light active photocatalysts through the incorporation of highly electronegative non-transition metal Pb or Sn ions into the perovskite lattice of Ba(In(1/3)Pb(1/3)M'(1/3))O3 (M = Sn, Pb; M' = Nb, Ta). X-ray diffraction, X-ray absorption spectroscopic, and energy dispersive spectroscopic microprobe analyses reveal that tetravalent Pb or Sn ions exist in the B-site of the perovskite lattice, along with In and Nb/Ta ions. According to diffuse UV-vis spectroscopic analysis, the Pb-containing quaternary metal oxides Ba(In(1/3)Pb(1/3)M'(1/3))O3 possess a much narrower band gap (E(g) approximately 1.48-1.50 eV) when compared to the ternary oxides Ba(In(1/2)M'(1/2))O3 (E(g) approximately 2.97-3.30 eV) and the Sn-containing Ba(In(1/3)Sn(1/3)M'(1/3))O3 derivatives (E(g) approximately 2.85-3.00 eV). Such a variation of band gap energy upon the substitution is attributable to the broadening of the conduction band caused by the dissimilar electronegativities of the B-site cations. In contrast to the ternary or the Sn-substituted quaternary compounds showing photocatalytic activity under UV-vis irradiation, the Ba(In(1/3)Pb(1/3)M'(1/3))O3 compounds induce an efficient photodegradation of 4-chlorophenol under visible light irradiation (lambda > 420 nm). The present results highlight that the substitution of electronegative non-transition metal cations can provide a very powerful way of developing efficient visible light harvesting photocatalysts through tuning of the band structure of a semiconductive metal oxide.  相似文献   

11.
The emission properties, including luminescence lifetimes, of the lanthanide complexes Ln(Tf(2)N)(3) (Tf(2)N = bis(trifluoromethanesulfonyl)amide); Ln(3+) = Eu(3+), Tm(3+), Dy(3+), Sm(3+), Pr(3+), Nd(3+), Er(3+)) in the ionic liquid bmpyr Tf(2)N (bmpyr = 1-n-butyl-1-methylpyrrolidinium) are presented. The luminescence quantum efficiencies, η, and radiative lifetimes, τ(R), are determined for Eu(3+)((5)D(0)), Tm(3+)((1)D(2)), Dy(3+)((4)F(9/2)), Sm(3+)((4)G(5/2)), and Pr(3+)((3)P(0)) emission. The luminescence lifetimes in these systems are remarkably long compared to values typically reported for Ln(3+) complexes in solution, reflecting weak vibrational quenching. The 1.5 μm emission corresponding to the Er(3+) ((4)I(13/2)→(4)I(15/2)) transition, for example, exhibits a lifetime of 77 μs. The multiphonon relaxation rate constants are determined for 10 different Ln(3+) emitting states, and the trend in multiphonon relaxation is analyzed in terms of the energy gap law. The energy gap law does describe the general trend in multiphonon relaxation, but deviations from the trend are much larger than those normally observed for crystal systems. The parameters determined from the energy gap law analysis are consistent with those reported for crystalline hosts. Because Ln(3+) emission is known to be particularly sensitive to quenching by water in bmpyr Tf(2)N, the binding properties of water to Eu(3+) in solutions of Eu(Tf(2)N)(3) in bmpyr Tf(2)N have been quantified. It is observed that water introduced into these systems binds quantitatively to Ln(3+). It is demonstrated that Eu(Tf(2)N)(3) can be used as a reasonable internal standard, both for monitoring the dryness of the solutions and for estimating the quantum efficiencies and radiative lifetimes for visible-emitting [Ln(Tf(2)N)(x)](3-x) complexes in bmpyr Tf(2)N.  相似文献   

12.
The impurity diffusion of Pr(3+) in dense polycrystalline LaMnO(3), LaCoO(3) and LaFeO(3) was studied at 1373-1673 K in air in order to investigate cation diffusion in these materials. Cation distribution profiles were measured by secondary-ion mass spectrometry and it was found that penetration profiles of Pr(3+) had two distinct regions with different slopes. The first, shallow region was used to evaluate the bulk diffusion coefficients. The activation energies for bulk diffusion of Pr(3+) in LaMnO(3), LaCoO(3) and LaFeO(3) were 126 +/- 6, 334 +/- 68 and 258 +/- 75 kJ mol(-1), respectively, which are significantly lower than previously predicted by atomistic simulations. The bulk diffusion of Pr(3+) in LaMnO(3) was enhanced compared to LaCoO(3) and LaFeO(3) due to higher concentrations of intrinsic point defects in LaMnO(3), especially La site vacancies. Grain-boundary diffusion coefficients of Pr(3+) in LaCoO(3) and LaFeO(3) materials were evaluated according to the Whipple-Le Claire equation. Activation energies for grain-boundary diffusion of Pr(3+) in LaCoO(3) and LaFeO(3) materials were 264 +/- 41 kJ mol(-1) and 290 +/- 36 kJ mol(-1) respectively. Finally, a correlation between activation energies for cation diffusion in bulk and along grain boundaries in pure and substituted LaBO(3) materials (B = Cr, Fe, Co) is discussed.  相似文献   

13.
A combinatorial approach was used to systematically investigate the effect of trace Pr(3+), Tb(3+), or Sm(3+) on the VUV photoluminescence of Eu(3+) in the Pr(3+), Tb(3+), or Sm(3+) co-doped (Y(0.65)Gd(0.35))BO(3):E(3+)(0.05). We found that Pr(3+) and Tb(3+)increases the VUV photoluminescent efficiency, while Sm(3+) decreases the efficiency. The optimized composition was identified to be between 7 x 10(-6) and 3 x 10(-4), and the corresponding efficiency improvement is about 15%. Scale-up experiments confirmed the results in the combinatorial materials libraries.  相似文献   

14.
The synthesis and structural characterization of new layered rare-earth silicates K(3)[M(1-a)Ce(a)Si(3)O(8)(OH)(2)], M = Y(3+), Tb(3+), a < 1 (AV-22 materials), have been reported. These materials combine the properties of layered silicates, such as intercalation chemistry, and photoluminescence and may find applications in new types of sensor devices. For mixed Tb/Ce-AV-22, evidence has been found for the energy transfer from the large Ce(3+) 4f( 1) --> 5d(1) broad band to the sharp Tb(3+) 4f (8) lines. This energy transfer allows the fine-tuning of the color emission in the blue-green region of the chromaticity diagram. Upon Ce(3+) excitation (342 nm), the radiance of Tb/Ce-AV-22 is approximately 2 times higher than that measured under direct Tb(3+) excitation, which reinforces the existence of effective room-temperature Ce(3+)-to-Tb(3+) energy transfer.  相似文献   

15.
Complete phase transition from hexagonal LnF(3) (Ln(3+) = La(3+), Ce(3+), Pr(3+)) to monodisperse ultrasmall (~7 nm) cubic Ln(0.8)M(0.2)F(2.8) (M(2+) = Ca(2+), Sr(2+), Ba(2+)) disordered solid solution nanocubes was successfully achieved through alkaline-earth doping, which induced great intensification of the near-infrared to visible upconversion emissions of the optically active rare earth ions.  相似文献   

16.
YF(3):Ln(3+) (Ln = Ce, Tb, Pr) microspindles were successfully fabricated by a facile hydrothermal method. X-Ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), lifetimes, photoluminescence (PL) and low-voltage cathodoluminescence (CL) were used to characterize the resulting samples. The lengths and diameters of YF(3):0.02Ce(3+) microspindles are around 760 nm and 230 nm, respectively. Adding dilute acid and trisodium citrate (Cit(3-)) are essential for obtaining YF(3) microspindles. A potential formation mechanism for YF(3) microspindles has been presented. PL spectroscopy investigations show that YF(3):Ce(3+) and YF(3):Tb(3+) microcrystals exhibit the characteristic emission of Ce(3+) 5d → 4f and Tb(3+ 5)D(4)→(7)F(J) (J = 6-3) transitions, respectively. In addition, the energy transfer from Ce(3+) to Tb(3+) was investigated in detail for YF(3):Ce(3+), Tb(3+) microspindles. Under the excitation of electron beams, YF(3):Pr(3+) show quantum cutting emission and YF(3):Ce(3+), Tb(3+) phosphors exhibit more intense green emission than the commercial phosphor ZnO:Zn.  相似文献   

17.
The synthesis and spectroscopic investigation of Pr(3+):YF(3) nanoparticles with nominal concentration between 0.05% and 5 at% Pr(3+) are reported. Pr(3+) emission in the visible range of the spectrum is investigated at room temperature and at 10 K as well as time resolved spectroscopy as a function of Pr(3+) concentration. The upconverted emission from the orange to the blue region is observed and the time-resolved spectroscopy of the visible emissions is discussed as a function of the doping level. A careful analysis of the decays permits identification of the main energy-transfer mechanisms that determine the population of the excited levels at various times during the decay.  相似文献   

18.
Luminescent perovskite nanosheets were prepared by exfoliation of single- or double-layered perovskite oxides, K2Ln2Ti3O10, KLnNb2O7, and RbLnTa2O7 (Ln: lanthanide ion). The thickness of the individual nanosheets corresponded to those of the perovskite block in the parent layered compounds. Intense red and green emissions were observed in aqueous solutions with Gd1.4Eu0.6Ti3O10- and La0.7Tb0.3Ta2O7-nanosheets, respectively, under UV illumination with energies greater than the corresponding host oxide band gap. The coincidence of the excitation spectrum and the band gap absorbance indicates that the visible emission results from energy transfer within the nanosheet. The red emission intensity of the Gd1.4Eu0.6Ti3O10-nanosheets was much stronger than that of the La0.90Eu0.05Nb2O7-nanosheets reported previously. The strong emission intensity is a result of a two-step energy transfer cascade within the nanosheet from the Ti-O network to Gd(3+) and then to Eu(3+). The emission intensities of the Gd1.4Eu0.6Ti3O10- and La0.7Tb0.3Ta2O7-nanosheets can be modulated by applying a magnetic field (1.3-1.4 T), which brings about a change in orientation of the nanosheets in solution. The emission intensities increased when the excitation light and the magnetic field directions were perpendicular to each other, and they decreased when the excitation and magnetic field were collinear and mutually perpendicular to the direction of detection of the emitted light.  相似文献   

19.
Site-selective fluorescence laser spectroscopy of Pr (3+) ions in lead tungstate single crystal were investigated at temperatures from 10 to 300 K. The site-selective emission spectra and fluorescence decays from the (3)P J ( J = 0, 1, 2) and (1)D 2 states were analyzed. The (3)P J ( J = 0, 1, 2) level shows its predominantly radioactive character with the typical greenish-blue luminescence ascribed to (3)P J transition. The emission from the (1)D 2 level is only observed when this level is directly excited. The decay kinetic of the (1)D 2 level was measured under site-selective excitation and discussed in terms of cross-relaxation. The up-conversion emission from levels (3)P 1 and (3)P 0 following excitation of the (1)D 2 state was observed in the PbWO 4 crystal between 10 and 300 K. The main up-conversion mechanism, together with the understanding the quenching of the (1)D 2 fluorescence in this Pr (3+) heavily doped PbWO 4 were discussed. The presence of the complex structures of the emission spectra and different decay profiles indicate that several processes contribute to the quenching of the (1)D 2 fluorescence of Pr (3+) ions. It was found that the up-conversion fluorescence intensity had a quadratic dependence on the laser input power. The temporal behavior of the up converted emission indicates that an energy-transfer up-conversion is the dominant process.  相似文献   

20.
The mechanism of Ni substitution into the oxide semiconductor InTaO(4) has been studied through a combination of structural and spectroscopic techniques, providing insights into its previously reported photoactivity. Magnetic susceptibility and X-ray absorption near-edge spectroscopy (XANES) measurements demonstrate that nickel is divalent within the host lattice. The combined refinement of synchrotron X-ray and neutron powder diffraction data indicates that the product of Ni doping has the stoichiometry of (In(1-x)Ni(2x/3)Ta(x/3))TaO(4) with a solubility limit of x ≈ 0.18, corresponding to 12% Ni on the In site. Single-phase samples were only obtained at synthesis temperatures of 1150 °C or higher due to the sluggish reaction mechanism that is hypothesized to result from small free energy differences between (In(1-x)Ni(2x/3)Ta(x/3))TaO(4) compounds with different x values. Undoped InTaO(4) is shown to have an indirect band gap of 3.96 eV, with direct optical transitions becoming allowed at photon energies in excess of 5.1 eV. Very small band-gap reductions (less than 0.2 eV) result from Ni doping, and the origin of the yellow color of (In(1-x)Ni(2x/3)Ta(x/3))TaO(4) compounds instead results from a weak (3)A(2g) → (3)T(1g) internal d → d transition not associated with the conduction or valence band that is common to oxide compounds with Ni(2+) in an octahedral environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号