首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we evaluated trends in the bond distances and dissociation enthalpies of actinide oxides AnO and AnO(2) (An = Th-Lr) on the basis of consistent computed data obtained by using density functional theory in conjunction with relativistic small-core pseudopotentials. Computations were carried out on AnO (An = Th-Lr) and AnO(2) (An = Np, Pu, Bk-Lr) species, while for the remaining AnO(2) species recent literature data (Theor. Chem. Acc. 2011, 129, 657) were utilized. The most important computed properties include the geometries, vibrational frequencies, dissociation enthalpies, and several excited electronic states. These molecular properties of the late actinide oxides (An = Bk-No) are reported here for the first time. We present detailed analyses of the bond distances, covalent bonding properties, and dissociation enthalpies.  相似文献   

2.
Reactions of atomic and ligated dipositive actinide ions, An2+, AnO2+, AnOH2+, and AnO2(2+) (An = Th, U, Np, Pu, Am) were systematically studied by Fourier transform ion cyclotron resonance mass spectrometry. Kinetics were measured for reactions with the oxidants, N2O, C2H4O (ethylene oxide), H2O, O2, CO2, NO, and CH2O. Each of the five An2+ ions reacted with one or more of these oxidants to produce AnO2+, and reacted with H2O to produce AnOH2+. The measured pseudo-first-order reaction rate constants, k, revealed disparate reaction efficiencies, k/k(COL): Th2+ was generally the most reactive and Am2+ the least. Whereas each oxidant reacted with Th2+ to give ThO2+, only C2H4O oxidized Am2+ to AmO2+. The other An2+ exhibited intermediate reactivities. Based on the oxidation reactions, bond energies and formation enthalpies were derived for the AnO2+, as were second ionization energies for the monoxides, IE[AnO+]. The bare dipositive actinyl ions, UO2(2+), NpO2(2+), and PuO2(2+), were produced from the oxidation of the corresponding AnO2+ by N2O, and by O2 in the cases of UO2+ and NpO2+. Thermodynamic properties were derived for these three actinyls, including enthalpies of formation and electron affinities. It is concluded that bare UO2(2+), NpO2(2+), and PuO2(2+) are thermodynamically stable toward Coulomb dissociation to [AnO+ + O+] or [An+ + O2+]. It is predicted that bare AmO2(2+) is thermodynamically stable. In accord with the expected instability of Th(VI), ThO(2+) was not oxidized to ThO2(2+) by any of the seven oxidants. The gas-phase results are compared with the aqueous thermochemistry. Hydration enthalpies were derived here for uranyl and plutonyl; our deltaH(hyd)[UO2(2+)] is substantially more negative than the previously reported value, but is essentially the same as our deltaH(hyd)[PuO2(2+)].  相似文献   

3.
Extensive ab initio calculations both in gas phase and solution have been carried out to study the equilibrium structure, vibrational frequencies, and bonding characteristics of various actinyl (UO2(2+), NpO2(+), and PuO2(2+)) and their hydrated forms, AnO2(H2O)n(z+) (n=4, 5, and 6). Bulk solvent effects were studied using a continuum method. The geometries were fully optimized at the coupled-cluster singles + doubles (CCSD), density-functional theory (DFT), and M?ller-Plesset (MP2) level of theories. In addition vibrational frequencies have been obtained at the CCSD as well as MP2/DFT levels. The results show that both the short-range and long-range solvent effects are important. The combined discrete-continuum model, in which the ionic solute and the solvent molecules in the first and second solvation shells are treated quantum mechanically while the solvent is simulated by a continuum model, can predict accurately the bonding characteristics. Moreover, our values of solvation free energies suggest that five- and six-coordinations are equally preferred for UO2(2+), and five-coordinated species are preferred for NpO2(+) and PuO2(2+). On the basis of combined quantum-chemical and continuum treatments of the hydrated complexes, we are able to determine the optimal cavity radii for the solvation models. The coupled-cluster computations with large basis sets were employed for the vibrational spectra and equilibrium geometries both of which compare quite favorably with experiment. Our most accurate computations reveal that both five- and six-coordination complexes are important for these species.  相似文献   

4.
The following monopositive actinyl ions were produced by electrospray ionization of aqueous solutions of An(VI)O(2)(ClO(4))(2) (An = U, Np, Pu): U(V)O(2)(+), Np(V)O(2)(+), Pu(V)O(2)(+), U(VI)O(2)(OH)(+), and Pu(VI)O(2)(OH)(+); abundances of the actinyl ions reflect the relative stabilities of the An(VI) and An(V) oxidation states. Gas-phase reactions with water in an ion trap revealed that water addition terminates at AnO(2)(+)·(H(2)O)(4) (An = U, Np, Pu) and AnO(2)(OH)(+)·(H(2)O)(3) (An = U, Pu), each with four equatorial ligands. These terminal hydrates evidently correspond to the maximum inner-sphere water coordination in the gas phase, as substantiated by density functional theory (DFT) computations of the hydrate structures and energetics. Measured hydration rates for the AnO(2)(OH)(+) were substantially faster than for the AnO(2)(+), reflecting additional vibrational degrees of freedom in the hydroxide ions for stabilization of hot adducts. Dioxygen addition resulted in UO(2)(+)(O(2))(H(2)O)(n) (n = 2, 3), whereas O(2) addition was not observed for NpO(2)(+) or PuO(2)(+) hydrates. DFT suggests that two-electron three-centered bonds form between UO(2)(+) and O(2), but not between NpO(2)(+) and O(2). As formation of the UO(2)(+)-O(2) bonds formally corresponds to the oxidation of U(V) to U(VI), the absence of this bonding with NpO(2)(+) can be considered a manifestation of the lower relative stability of Np(VI).  相似文献   

5.
6.
The reduction potentials of the AnO(2)(H(2)O)(5)(2+)/AnO(2)(H(2)O)(5)(+) couple (An = U, Np, Pu, and Am) and Fe(H(2)O)(6)(3+) to Fe(H(2)O)(6)(2+) in aqueous solution were calculated at MP2, CASPT2, and CCSD(T) levels of theory. Spin-orbit effects for all species were estimated at the CASSCF level. Solvation of the hydrated metal cations was modeled both by polarizable conductor model (PCM) calculation and by solvating the solutes with over one thousand TIP3P water molecules in the QM/MM framework. The redox reaction energy calculated by QM/MM method agreed well with the PCM method after corrections using the classical Born formula for the contribution from the rest of the solvation sphere and correction for dynamic response of solvent polarization in the MM region. Calculated reduction potentials inclusive of spin-orbit effect, zero-point energy, thermal corrections, entropy effect, and PCM solvation energy were found to be comparable with experimental data. The difference between CASPT2 calculated and experimental reduction energies were less than 35 kJ/mol in all cases, which ensures that CASPT2 (and CCSD(T)) calculations provide reasonable estimates of the thermochemistry of these reactions.  相似文献   

7.
The electronic spectra of UO(2) (2+) and [UO(2)Cl(4)](2-) are calculated with a recently proposed relativistic time-dependent density functional theory method based on the two-component zeroth-order regular approximation for the inclusion of spin-orbit coupling and a noncollinear exchange-correlation functional. All excitations out of the bonding sigma(u) (+) orbital into the nonbonding delta(u) or phi(u) orbitals for UO(2) (2+) and the corresponding excitations for [UO(2)Cl(4)](2-) are considered. Scalar relativistic vertical excitation energies are compared to values from previous calculations with the CASPT2 method. Two-component adiabatic excitation energies, U-O equilibrium distances, and symmetric stretching frequencies are compared to CASPT2 and combined configuration-interaction and spin-orbit coupling results, as well as to experimental data. The composition of the excited states in terms of the spin-orbit free states is analyzed. The results point to a significant effect of the chlorine ligands on the electronic spectrum, thereby confirming the CASPT2 results: The excitation energies are shifted and a different luminescent state is found.  相似文献   

8.
The title compounds, [AnO2(18-crown-6)]n+, An = U, Np, and Pu and n = 1 and 2, as well as the related (experimentally observed) complex [UO2(dicyclohexyl-18-crown-6)]2+ are studied using relativistic density functional theory (DFT). Different relativistic methods (large-core and small-core effective core potentials, all-electron scalar four-component) and two flavors of approximate DFT (B3LYP and PBE) are used. Calculated bond lengths agree well with the available experimental data for the NpV complex, while larger differences for the UVI complexes appear to be related to the large uncertainties in the experimental data. The axial AnO bonds are found to be weaker and longer than in the corresponding penta-aquo complexes, though still of partial triple-bond character. The AnO bond lengths and strengths decrease along the actinide series, consistent with the actinide contraction. Gas-phase binding energies calculated for the penta-aquo complexes and crown-ether complexes of the actinides studied, as well as ligand-exchange energies, show that there is no intrinsic preference, or "better fit", for actinyl(V) cations as compared to actinyl(VI) ones. Rather, the ability of NpO2+ (NpV) to form in-cavity 18-crown-6 complexes in water, which is impossible for UO22+, is traced to solvation effects in polar solvents. Thus, the experimentally observed stabilization of the pentavalent oxidation state as compared to the hexavalent one is due to the effective screening of the charge provided by the macrocycle, and this leads to destabilization of the AnVI crown complexes relative to their AnV counterparts.  相似文献   

9.
熊忠华  陈琦  郑秀梅  魏锡文 《化学学报》2005,63(7):572-576,F005
首先用密度泛函理论(DFT)方法研究了铀酰和钚酰离子的几何与电子结构,计算结果与实验基本符合,表明DFT方法也能用于含铀和钚重原子的化合物计算.然后对铀酰和钚酰水合离子的几何构型、Mulliken集居数分布以及铀酰(钚酰)与配体水分子的结合能进行计算,计算结果表明UO22+·5H2O和PuO22+·5H2O分别为铀酰和钚酰系列水合离子中最稳定的配合物.  相似文献   

10.
Electronic structure calculations at the coupled cluster (CCSD(T)) and density functional theory levels with relativistic effective core potentials and large basis sets were used to predict the isolated uranyl ion frequencies. The effects of anharmonicity and spin-orbit corrections on the harmonic frequencies were calculated. The anharmonic effects are larger than the spin-orbit corrections, but both are small. The anharmonic effects decreased all the frequencies, whereas the spin-orbit corrections increased the stretches and decreased the bend. Overall, these two corrections decreased the harmonic asymmetric stretch frequency by 6 cm-1, the symmetric stretch by 3 cm-1, and the bend by 3 cm-1. The best calculated values for UO22+ for the asymmetric stretch, symmetric stretch, and bend were 1113, 1032, and 174 cm-1, respectively. The separation between the asymmetric and the symmetric stretch band origins was predicted to be 81 cm-1, which is consistent with experimental trends for substituted uranyls in solution and in the solid state. The anharmonic vibrational frequencies of the isoelectronic ThO2 molecule also were calculated and compared to experiment to calibrate the UO22+ results.  相似文献   

11.
Ab initio molecular dynamics simulations at 300 K, based on density functional theory, are performed to study the hydration shell geometries, solvent dipole, and first hydrolysis reaction of the uranium(IV) (U(4+)) and uranyl(V) (UO(2)(+)) ions in aqueous solution. The solvent dipole and first hydrolysis reaction of aqueous uranyl(VI) (UO(2)(2+)) are also probed. The first shell of U(4+) is coordinated by 8-9 water ligands, with an average U-O distance of 2.42 ?. The average first shell coordination number and distance are in agreement with experimental estimates of 8-11 and 2.40-2.44 ?, respectively. The simulated EXAFS of U(4+) matches well with recent experimental data. The first shell of UO(2)(+) is coordinated by five water ligands in the equatorial plane, with the average U═O(ax) and U-O distances being 1.85 ? and 2.54 ?, respectively. Overall, the hydration shell structure of UO(2)(+) closely matches that of UO(2)(2+), except for small expansions in the average U═O(ax) and U-O distances. Each ion strongly polarizes their respective first-shell water ligands. The computed acidity constants (pK(a)) of U(4+) and UO(2)(2+) are 0.93 and 4.95, in good agreement with the experimental values of 0.54 and 5.24, respectively. The predicted pK(a) value of UO(2)(+) is 8.5.  相似文献   

12.
The present work highlights the importance, in nuclear fuel safety and performance, of the very high oxygen potentials of actinide oxides (ThO2, UO2, NpO2, PuO2) at temperatures close to melting (around 3000 K), i.e. a tendency to oxidize their environment and chemically react with it.Laser heating coupled with fast pyrometry constitutes an effective approach of studying the melting behaviour of these materials under a controlled atmosphere. Novel results reported in this work show that earlier data are confirmed, with the current technique, only for compounds with a relatively low oxygen potential, such as ThO2 and UO2 and their mixed compositions.  相似文献   

13.
Minimum structures and harmonic vibrational frequencies of dibenzofuran (DF), 2,3,7,8-tetrachlorodibenzofuran (TCDF), and octachlorodibenzofuran (OCDF) were calculated using the multiconfigurational complete active space self-consistent field (CASSCF) and density functional theory (DFT) methods. The electronic transitions in these compounds were studied via the single-state multireference second-order perturbation theory (CASPT2) based on the CASSCF(14,13) references, as well as the time-dependent DFT (TD-B3P86) employing the cc-pVDZ (CASSCF/CASPT2) and 6-31G(d,p) (TD-B3P86) basis sets. The B3P86 geometry and harmonic vibrational frequencies of ground state DF agree very well with the experimental data, and the CASSCF/CASPT2 excitation energies and oscillator strengths are accurate enough to provide a reliable assignment of the absorption bands in the 200-300 nm region. The close agreements with experiment for the parent DF give the present theoretical approaches a valuable credit in predicting the properties of the environmentally toxic polychlorinated congeners, which is all the more important considering the difficulties and hazards in obtaining the experimental data.  相似文献   

14.
Reactions of laser-ablated Th atoms with H2O during condensation in excess argon have formed a variety of intriguing new Th, H, O species. Infrared absorptions at 1406.0 and 842.6 cm-1 are assigned to the H-Th and Th=O stretching vibrations of HThO. Absorptions at 1397.2, 1352.4, and 822.8 cm-1 are assigned to symmetric H-Th-H, antisymmetric H-Th-H, and Th=O stretching vibrations of the major primary reaction product H2ThO. Thorium monoxide (ThO) produced in the reaction inserts into H2O to form HThO(OH), which absorbs at 1341.0, 804.0, and 542.6 cm-1. Both HThO(OH) and ThO2 add another H2O molecule to give HTh(OH)3 and OTh(OH)2, respectively. Weaker thorium hydride (ThH1(-4)) absorptions were also observed. Relativistic DFT and ab initio calculations were performed on all proposed molecules and other possible isomers. The good agreement between experimental and calculated vibrational frequencies, relative absorption intensities, and isotopic shifts provides support for these first identifications of Th, H, O molecular species.  相似文献   

15.
The structural properties of several plutonium(IV) and (VI) complexes have been examined in the gaseous and aqueous phases using Kohn-Sham density functional theory calculations with scalar relativistic effective core potentials and the polarizable continuum solvation model. The aquo and nitrate complexes of PuO(2)(2+) and Pu(4+) were considered in addition to the aquo-chloro complexes of PuO(2)(2+). The nitrate and chloro- complexes formed with triphenylphosphine oxide (TPPO) and tributylphosphate (TBP) respectively were also studied. The structural parameters of the plutonyl complexes were compared to their uranyl and neptunyl analogues. The bond lengths and vibrational frequencies of the plutonyl complexes can generally be computed with sufficient accuracy with the pure PBE density functional with shorter bond lengths being predicted by the B3LYP functional. The structural parameters of the [PuO(2)Cl(2)L(2)] systems formed with TPPO and TBP as well as the aqueous [PuO(2)Cl(2)(H(2)O)(3)] complex are matched to previous experimental results. Overall, the inclusion of ligands in the equatorial region results in significant changes in the stretching frequency of the plutonyl group. The structural features of the plutonyl (VI) systems are rather similar to those of their 5f(0) uranyl and 5f(1) neptunyl counterparts. For the Pu(IV) aquo and nitrate complexes, the average of the calculated Pu-OH(2) and Pu-O(nitrate) bond lengths are generally within 0.04 ? of the reported experimental values. Overall Kohn-Sham DFT can be used successfully in predicting the structures of this diverse set of Pu(VI) and Pu(IV) complexes.  相似文献   

16.
The infrared and Raman spectra of liquid and vapor-phase 2-fluoropyridine and 3-fluoropyridine have been recorded and assigned. Ab initio and DFT calculations were carried out to compute the molecular structures and to verify the vibrational assignments. The observed and calculated spectra agree extremely well. The ring bond distances of the fluoropyridines are very similar to those of pyridine except for a shortening of the C-N(F) bond in 2-fluoropyridine. The C-F bond stretching frequencies are similar to that in fluorobenzene reflecting the influence of the ring π bonding.  相似文献   

17.
The molecular geometry, the normal mode frequencies and corresponding vibrational assignments, (1)H and (13)C NMR chemical shift values of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O] in the ground state were performed by HF and B3LYP levels of theory using the LanL2DZ basis set. The optimized bond lengths and bond angles are in good agreement with the X-ray data. The vibrational spectra of the title compound which is calculated by HF and DFT methods, reproduces vibrational wave numbers and intensities with an accuracy which allows reliable vibrational assignments. The title compound [(C(10)H(10)NO)(+)I(-)H(2)O] have been studied theoretically in the 4, 000-200 cm(-1) region and the assignment of all the observed bands were made. The analysis of the infrared spectra indicates that there are some structure-spectra correlations. These methods are proposed as a tool to be applied in the structural characterization of 8-hydroxy-1-methylquinolinium iodide monohydrate [(C(10)H(10)NO)(+)I(-)H(2)O], and thus providing useful support in the interpretation of experimental NMR data.  相似文献   

18.
采用ab initio RHF,MP2和B3LYP方法以及LanL2DZ和SDD基组计算了四面体锌族卤素阴离子化合物(MX42-,M=Zn(Ⅱ),Cd(Ⅱ),Hg(Ⅱ);X=F-,Cl-,Br-,I-)和钛族卤化物(MX4,M=Ti(Ⅳ),Zr(Ⅳ),Hf(Ⅳ);X=F-,Cl-,Br-,I-)的几何构型和振动频率。计算结果表明,LanL2DZ基组是合适的基组,能得到合理的电荷分布,几何参数以及振动频率。在锌族卤化物的计算中发现,角弯曲振动频率与实测值相当一致,键伸缩振动频率略为偏低,这主要是由于计算的键长略为偏长所致。MP2方法计算的振动频率更接近于实测值。在钛族卤化物的计算中,三种计算方法都相当地再现了实测值,而以B3LYP方法更为满意。  相似文献   

19.
The binding sites of Zn(2+), Cd(2+), and Hg(2+) in complexes with 2-(alpha-hydroxybenzyl)thiamine monophosphate chloride, (LH)(+)Cl(-), have been investigated in the solid state [2-(alpha-hydroxybenzyl)thiamin monophosphate chloride monoprotonated at the phosphate group and protonated at N(1)' is denoted as (LH)(+)Cl(-); therefore, the ligand monoprotonated at the phosphate group and deprotonated at N(1)' is L]. Complexes of formulae MLCl(2), M(LH)Cl(3), and (MCl(4))(2)(-)(LH)(2)(+) (M = Zn(2+), Cd(2+), and Hg(2+)) were isolated in aqueous and methanolic solutions, depending on pH. The crystal structure of the complex of formula HgL(2)Cl(2) was solved, together with that of the free ligand (LH)(+)Cl(-), by X-ray crystallography. HgL(2)Cl(2) crystallizes in C2/c, with a = 32.968(6) ?, b = 7.477(2) ?, c = 21.471(4) ?, beta = 118.19(1) degrees, V = 4665(2) ?(3), and Z = 4. (LH)(+)Cl(-) crystallizes in Cc, with a = 10.951(3) ?, b = 17.579(4) ?, c = 13.373(3) ?, beta = 105.36(2) degrees, V = 2482.4(10) ?(3), and Z = 4. Mercury(II) binds to the N(1') of the pyrimidine ring. Both ligands are in the S conformation [Phi(T) = -98.1(9) degrees and Phi(P) = 176.1(10) degrees for HgL(2)Cl(2) and Phi(T) = 104.1(5) degrees and Phi(P) = 171.9(6) degrees for (LH)(+)Cl(-)]. (31)P and (13)C NMR spectra, together with vibrational spectra (IR/Raman), are used to deduce the binding sites of the metal and the protonation states of the ligand at various pH values. It is found that solid-state (31)P NMR spectroscopy is particularly useful in characterizing these complexes as the (31)P shielding tensors are sensitive to the state of the phosphate group. On the other hand, the (31)P NMR spectra indicate that direct bonding between Zn(2+) and Cd(2+) to the phosphate can occur under certain preparation conditions. Solid-state (13)C NMR and vibrational (IR/Raman) spectroscopic results are also in agreement with the other techniques.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号