首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two interconvertible iron dioxide-dioxygen complexes were prepared and characterized by matrix isolation infrared absorption spectroscopy as well as theoretical calculations. Iron atoms react with O2 to form the inserted FeO2 molecule in solid argon only upon UV-visible light irradiation. Annealing allows the dioxygen molecules to diffuse and to react with FeO2 and form the side-on and end-on bonded dioxygen-iron dioxide complexes, (eta2-O2)FeO2 and (eta1-O2)FeO2. The side-on bonded structure is a peroxide complex having a singlet ground state with a nonplanar C2v symmetry. The end-on bonded isomer is characterized to be a superoxide complex with a planar 3A' ' ground state. These two isomers are photoreversible, that is, near-infrared light (lambda > 850 nm) induces the conversion of the side-on bonded (eta2-O2)FeO2 complex to the end-on bonded (eta1-O2)FeO2 isomer and vice versa with red light irradiation (lambda > 600 nm).  相似文献   

2.
The reactions of beryllium atoms with dioxygen were reinvestigated by matrix isolation infrared absorption spectroscopy. Besides the previously reported linear OBeO and cyclic Be(2)O(2) molecules, two interconvertible beryllium ozonide complexes were prepared and characterized. The BeOBe(η(2)-O(3)) complex was formed on annealing, which is characterized to be a side-on bonded ozonide complex with a planar C(2v) structure. The BeOBe(η(2)-O(3)) complex isomerized to the BeOBe(η(1)-O(3)) isomer under visible light excitation, which is an end-on bonded ozonide complex with planar C(s) symmetry. These two isomers are interconvertible; that is, visible light induces the conversion of the side-on bonded complex to the end-on bonded isomer, and vice versa on annealing. In addition, evidence is also presented for the linear BeOBeOBe cluster.  相似文献   

3.
Exposure of the isolable zirconocene sandwich compounds, (eta(5)-C5Me5)(eta(5)-C9H5-1-R(1)-3-R(2))Zr (R(1) = Me, (i)Pr, (t)Bu; R(2) = Me) to one atmosphere of dinitrogen resulted in N2 coordination. X-ray diffraction and NMR spectroscopy establish that the resulting dimeric dinitrogen compounds contain an unusual mu2,eta(2)-bridging indenyl ring and a weakly activated N2 ligand. N2 coordination from the isolable zirconium sandwich compounds is extremely sensitive to the number and size of the indenyl subsituents. Compounds bearing two [(i)Pr] or three methyl substituents are stable as eta(9) sandwich compounds for weeks under dinitrogen likely due to the inability to dimerize through a two-atom N2 bridge. Performing the reduction of (eta(5)-C5Me5)(eta(5)-C9H5-1-R(1)-3-R(2))ZrCl2 (R(1) = (i)Pr, (t)Bu; R(2) = Me; R(1) = R(2) = SiMe3) under an N2 atmosphere produced a different outcome; rare examples of side-on, end-on zirconium dinitrogen compounds were isolated and in one case, crystallographically characterized. Protonolysis studies with weak Br?nsted acids were used to evaluate the relative activation of the bridging dinitrogen ligands.  相似文献   

4.
The relative energetics of mu-eta1:eta1 (trans end-on) and mu-eta2:eta2 (side-on) peroxo isomers of Cu2O2 fragments supported by 0, 2, 4, and 6 ammonia ligands have been computed with various density functional, coupled-cluster, and multiconfigurational protocols. There is substantial disagreement between the different levels for most cases, although completely renormalized coupled-cluster methods appear to offer the most reliable predictions. The significant biradical character of the end-on peroxo isomer proves problematic for the density functionals, while the demands on active space size and the need to account for interactions between different states in second-order perturbation theory prove challenging for the multireference treatments. In the latter case, it proved impossible to achieve any convincing convergence.  相似文献   

5.
A new dinitrogen complex, deep blue-green {[NPN]*Zr(THF)}(2)(mu-eta(2):eta(2)-N(2)) ([NPN]* = {[N-(2,4,6-Me(3)C(6)H(2))(2-N-5-MeC(6)H(3))](2)PPh}), was prepared in high yield by the reduction of [NPN]*ZrCl(2) with 2.2 equiv of KC(8) in THF under N(2). The solid-state molecular structure shows that N(2) is strongly activated (N-N bond length: 1.503(6) A) and bound side-on to two Zr atoms. Coordinated THF can be readily replaced by adding pyridine (py) or PMe(2)R (R = Me, Ph) to the complex to obtain {[NPN]*Zr(py)}(2)(mu-eta(2):eta(2)-N(2)) or {[NPN]*Zr(PMe(2)R)}(mu-eta(2):eta(2)-N(2)){Zr[NPN]*} in high yield. X-ray diffraction experiments show that the N(2) moiety is strongly activated and remains side-on bound to Zr for the py and PMe(2)Ph adducts; interestingly, only one PMe(2)Ph coordinates to the Zr(2)N(2) unit. {[NPN]*Zr(PMe(2)R)}(mu-eta(2):eta(2)-N(2)){Zr[NPN]*} reacts slowly with H(2) to provide {[NPN]*Zr(PMe(2)R)}(mu-H)(mu-eta(2):eta(2)-N(2)H){Zr[NPN]*}, as determined by isotopic labeling, and multinuclear NMR spectroscopy. The THF adduct does not react with H(2) even after an extended period, whereas the pyridine adduct does undergo a reaction with H(2), but to a mixture of products.  相似文献   

6.
7.
Two crystal structures of the mononuclear copper(I)-nitrosyl complexes [Cu(L3)(NO)] (1) and [Cu(L3')(NO)](ClO4) (2) with the related coligands L3- (hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate) and L3' (tris(3-tert-butyl-5-isopropyl-1-pyrazolyl)methane) are presented. These compounds are then investigated in detail using a variety of spectroscopic methods. Vibrational spectra show nu(N-O) at 1698 cm(-1) and nu(Cu-NO) split at 365/338 cm(-1) for 1, which translates to force constants of 12.53 (N-O) and 1.31 mdyn/A (Cu-NO), respectively. The weak Cu-NO force constant is in agreement with the observed instability of the Cu-NO bond. Interestingly, complex 2 with the neutral coligand L3' shows a stronger N-O bond, evident from nu(N-O) at 1742 cm(-1). This difference is attributed to a true second coordination sphere effect, where the covalency of the Cu(I)-NO bond is not altered. The EPR spectrum of 1 is in agreement with the Cu(I)-NO(radical) electronic structure of the complexes, as obtained from density functional theory (DFT) calculations. In addition, an interesting trend between g parallel(gz) and the Cu-N-O angle is established. Finally, high-quality MCD spectra of 1 are presented and assigned using TD-DFT calculations. Based on the in-depth spectroscopic characterization of end-on bound NO to copper(I) presented in this work, it is possible to determine the binding mode of the Cu-NO intermediate of Cu nitrite reductase studied by Scholes and co-workers (Usov, O. M.; Sun, Y.; Grigoryants, V. M.; Shapleigh, J. P.; Scholes, C. P., J. Am. Chem. Soc. 2006, 128, 13102-13111) in solution as strongly bent (approximately 135 degrees) but likely not side-on.  相似文献   

8.
N-N cleavage of the dialkylhydrazido complex [W(dppe)2(NNC5H10)] (B(W)) upon treatment with acid, leading to the nitrido/imido complex and piperidine, is investigated experimentally and theoretically. In acetonitrile and at room temperature, B(W) reacts orders of magnitude more rapidly with HNEt3BPh4 than its Mo analogue, [Mo(dppe)2(NNC5H10)] (B(Mo)). A stopped-flow experiment performed for the reaction of B(W) with HNEt3BPh4 in propionitrile at -70 degrees C indicates that protonation of B(W) is completed within the dead time of the stopped-flow apparatus, leading to the primary protonated intermediate B(W)H+. Propionitrile coordination to this species proceeds with a rate constant k(obs(1)) of 1.5 +/- 0.4 s(-1), generating intermediate RCN-B(W)H+ (R = Et) that rapidly adds a further proton at Nbeta and then mediates N-N bond splitting in a slower reaction (k(obs(2)) = 0.35 +/- 0.08 s(-1), 6 equiv of acid). k(obs(1)) and k(obs(2)) are found to be independent of the acid concentration. The experimentally observed reactivities of B(Mo) or B(W) with acids in nitrile solvents are reproduced by DFT calculations. In particular, geometry optimization of models of solvent-coordinated, Nbeta-protonated intermediates is found to lead spontaneously to separation into the nitrido/imido complexes and piperidine/piperidinium, corresponding to activationless heterolytic N-N bond cleavage processes. Moreover, DFT indicates a spontaneous cleavage of nonsolvated B(W) protonated at Nbeta. In the second part of this article, a theoretical analysis of the N-N cleavage reaction in the Mo(III) triamidoamine complex [HIPTN3N]Mo(N2) is presented (HIPTN3N = hexaisopropylterphenyltriamidoamine). To this end, DFT calculations of the Mo(III)N2)triamidoamine complex and its protonated and reduced derivatives are performed. Calculated structural and spectroscopic parameters are compared to available experimental data. N-N cleavage most likely proceeds by one-electron reduction of the Mo(V) hydrazidium intermediate [HIPTN3N]Mo(NNH3)+, which is predicted to have an extremely elongated N-N bond. From an electronic-structure point of view, this reaction is analogous to that of Mo/W hydrazidium complexes with diphos coligands. The general implications of these results with respect to synthetic N2 fixation are discussed.  相似文献   

9.
The reaction of a mixture of 1 equiv of PhPH(2) and 2 equiv of PhNHSiMe(2)CH(2)Cl with 4 equiv of Bu(n)Li followed by the addition of THF generates the lithiated ligand precursor [NPN]Li(2).(THF)(2) (where [NPN] = PhP(CH(2)SiMe(2)NPh)(2)). The reaction of [NPN]Li(2).(THF)(2) with TaMe(3)Cl(2) produces [NPN]TaMe(3), which reacts under H(2) to yield the diamagnetic dinuclear Ta(IV) tetrahydride ([NPN]Ta)(2)(mu-H)(4). This hydride reacts with N(2) with the loss of H(2) to produce ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)), which was characterized both in solution and in the solid state, and contains strongly activated N(2) bound in the unprecedented side-on end-on dinuclear bonding mode. A density functional theory calculation on the model complex [(H(3)P)(H(2)N)(2)Ta(mu-H)](2)(mu-eta(1):eta(2)-N(2)) provides insight into the molecular orbital interactions involved in the side-on end-on bonding mode of dinitrogen. The reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with propene generates the end-on bound dinitrogen complex ([NPN]Ta(CH(2)CH(2)CH(3)))(2)(mu-eta(1):eta(1)-N(2)), and the reaction of [NPN]Li(2).(THF)(2) with NbCl(3)(DME) generates the end-on bound dinitrogen complex ([NPN]NbCl)(2)(mu-eta(1):eta(1)-N(2)). These two end-on bound dinitrogen complexes provide evidence that the bridging hydride ligands are responsible for the unusual bonding mode of dinitrogen in ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)). The dinitrogen moiety in the side-on end-on mode is amenable to functionalization; the reaction of ([NPN]Ta(mu-H))(2)(mu-eta(1):eta(2)-N(2)) with PhCH(2)Br results in C-N bond formation to yield [NPN]Ta(mu-eta(1):eta(2)-N(2)CH(2)Ph)(mu-H)(2)TaBr[NPN]. Nitrogen-15 NMR spectral data are provided for all the tantalum-dinitrogen complexes and derivatives described.  相似文献   

10.
Peroxo intermediates are implicated in the catalytic cycles of iron enzymes involved in dioxygen metabolism. X-ray absorption spectroscopy has been used to gain insight into the iron coordination environments of the low-spin complex [Fe(III)(Me-TPEN)(eta(1)-OOH)](2+)(1) and the high-spin complex [Fe(III)(Me-TPEN)(eta(2)-O(2))](+)(2)(the neutral pentadentate N-donor ligand Me-TPEN =N-methyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine) and obtain metrical parameters unavailable from X-ray crystallography. The complexes exhibit relatively large pre-edge peak areas of approximately 15 units, indicative of iron centers with significant distortions from centrosymmetry. These distortions result from the binding of peroxide, either end-on hydroperoxo for 1 (r(Fe-O)= 1.81A) or side-on peroxo for 2 (r(Fe-O)= 1.99 A). The XAS analyses of 1 strongly support a six-coordinate low-spin iron(III) center coordinated to five nitrogen atoms from Me-TPEN and one oxygen atom from an end-on hydroperoxide ligand. However, the XAS analyses of 2 are not conclusive: Me-TPEN can act either as a pentadentate ligand to form a seven-coordinate peroxo complex, which has precedence in the DFT geometry optimization of [Fe(III)(N4Py)(eta(2)-O(2))](+)(the neutral pentadentate N-donor ligand N4Py =N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine), or as a tetradentate ligand with a dangling pyridylmethyl arm to form a six-coordinate peroxo complex, which is precedented by the crystal structure of [Fe(2)(III)(Me-TPEN)(2)(Cl)(2)(mu-O)](2+).  相似文献   

11.
A manganese atom reacts with dioxygen to form the previously characterized MnO 2 molecule in solid argon under UV-visible light irradiation. Subsequent sample annealing allows the dioxygen molecules to diffuse and to react with MnO 2 to give the (eta (2)-O 2)MnO 2 complex, which is characterized to be a side-on bonded peroxo manganese dioxide complex. The manganese tetraoxide MnO 4, which was predicted to be less stable than the (eta (2)-O 2)MnO 2 isomer, was not observed. However, the (eta (2)-O 2)MnO 2 complex reacts with another weakly coordinated dioxygen to give the (eta (2)-O 2)MnO 4 complex via visible light irradiation, in which the manganese tetraoxide is coordinated and stabilized by a side-on bonded O 2 molecule. Manganese dimer reacts with dioxygen to form the cyclic Mn(mu-O) 2Mn cluster spontaneously upon annealing, which further reacts with dioxygen to give the (eta (2)-O 2) 2Mn(mu-O) 2Mn cluster, a side-on bonded disuperoxide complex with a planar D 2 h structure.  相似文献   

12.
Cyclopentadienyltitanium (IV) complexes supported on Al2O3, SiO2 and MgO reduced with BuLi were tested in dinitrogen fixation at room temperature under normal pressure. Only the system supported on Al2O3 is active in this reaction.
- (IV), Al2O3, SiO2 MgO, BuLi, . Al2O3.
  相似文献   

13.
The dinuclear dinitrogen complex ([P2N2]Zr)2(mu-eta2:eta2-N2) reacts with terminal aryl alkynes to generate a new species in which the dinitrogen unit has been functionalized. The products formed have the general formula ([P2N2]Zr)2(mu-eta2:eta2-N2CCAr)(mu-CCAr) and display a styryl-hydrazido unit bridging the two Zr centers along with a bridging arylalkynide. The crystal structures of three of these products are reported. A mechanism is proposed for this process that involves cycloaddition of the alkyne to the side-on dinitrogen unit followed by protonation of the Zr-C bond by a second equivalent of terminal alkyne. A fluxional process is operative in solution that equilibrates the phosphorus nuclei at high temperature; in the slow exchange limit, the two [P2N2]Zr ends of complex are inequivalent as evidenced by four resonances in the 31P NMR spectrum for the inequivalent phosphorus donors. This C-N bond-forming reaction is unique in that an activated dinitrogen fragment undergoes a reaction with an alkyne.  相似文献   

14.
[structure: see text]. Many important asymmetric reactions are catalyzed by (BINOLate)Ti species with unknown structures. Reported here are three structures of BINOLate titanium complexes that show an interesting aggregation of (BINOLate)Ti(OiPr)2 with itself and with titanium tetraisopropoxide. These complexes are potential intermediates in the asymmetric addition of alkyl groups to aldehydes.  相似文献   

15.
The reactions of scandium atoms and O(2) have been reinvestigated using matrix isolation infrared spectroscopy and density functional theory calculations. A series of new oxygen-rich scandium oxide/dioxygen complexes were prepared and characterized. The ground state scandium atoms react with dioxygen to form OSc(eta(2)-O(3)), a side-on bonded scandium monoxide-ozonide complex. The OSc(eta(2)-O(3)) complex rearranges to a more stable Sc(eta(2)-O(2))(2) isomer under visible light irradiation, which is characterized to be a side-on bonded superoxo scandium peroxide complex. The homoleptic trisuperoxo scandium complex, Sc(eta(2)-O(2))(3), and the superoxo scandium bisozonide complex, (eta(2)-O(2))Sc(eta(2)-O(3))(2), are also formed upon sample annealing. The Sc(eta(2)-O(2))(3) complex is determined to have a D(3h) symmetry with three equivalent side-on bonded superoxo ligands around the scandium atom. The (eta(2)-O(2))Sc(eta(2)-O(3))(2) complex has a C(2) symmetry with two equivalent side-on bonded O3 ligands and one side-on bonded superoxo ligand.  相似文献   

16.
Treatment of cis-[W(N2)2(PMe2Ph)4] (5) with an equilibrium mixture of trans-[RuCl(eta 2-H2)(dppp)2]X (3) with pKa = 4.4 and [RuCl(dppp)2]X (4) [X = PF6, BF4, or OTf; dppp = 1,3-bis(diphenylphosphino)propane] containing 10 equiv of the Ru atom based on tungsten in benzene-dichloroethane at 55 degrees C for 24 h under 1 atm of H2 gave NH3 in 45-55% total yields based on tungsten, together with the formation of trans-[RuHCl(dppp)2] (6). Free NH3 in 9-16% yields was observed in the reaction mixture, and further NH3 in 36-45% yields was released after base distillation. Detailed studies on the reaction of 5 with numerous Ru(eta 2-H2) complexes showed that the yield of NH3 produced critically depended upon the pKa value of the employed Ru(eta 2-H2) complexes. When 5 was treated with 10 equiv of trans-[RuCl(eta 2-H2)(dppe)2]X (8) with pKa = 6.0 [X = PF6, BF4, or OTf; dppe = 1,2-bis(diphenylphosphino)ethane] under 1 atm of H2, NH3 was formed in higher yields (up to 79% total yield) compared with the reaction with an equilibrium mixture of 3 and 4. If the pKa value of a Ru(eta 2-H2) complex was increased up to about 10, the yield of NH3 was remarkably decreased. In these reactions, heterolytic cleavage of H2 seems to occur at the Ru center via nucleophilic attack of the coordinated N2 on the coordinated H2 where a proton (H+) is used for the protonation of the coordinated N2 and a hydride (H-) remains at the Ru atom. Treatment of 5, trans-[W(N2)2(PMePh2)4] (14), or trans-[M(N2)2(dppe)2] [M = Mo (1), W (2)] with Ru(eta 2-H2) complexes at room temperature led to isolation of intermediate hydrazido(2-) complexes such as trans-[W(OTf)(NNH2)(PMe2Ph)4]OTf (19), trans-[W(OTf)(NNH2)(PMePh2)4]OTf (20), and trans-[WX(NNH2)(dppe)2]+ [X = OTf (15), F (16)]. The molecular structure of 19 was determined by X-ray analysis. Further ruthenium-assisted protonation of hydrazido(2-) intermediates such as 19 with H2 at 55 degrees C was considered to result in the formation of NH3, concurrent with the generation of W(VI) species. All of the electrons required for the reduction of N2 are provided by the zerovalent tungsten.  相似文献   

17.
When a very small concentration of H2 is added to a Ne:NH3=800:1 sample and the resulting mixture is deposited at 4.3 K, a new absorption appears at 4151.1 cm(-1) which can be assigned to the H2 stretching fundamental of H2 (j=1) complexed with NH3. Other new absorptions which appear near the vibrational fundamentals of NH3 are assigned to the NH3 moiety in this complex and in the complex of NH3 with H2 (j=0). The results of experiments in which HD or D2 is added to the Ne:NH3 mixture support these assignments. Ab initio and density functional calculations predict the observed infrared activation of the H2-stretching vibration for a structure in which the axis of the H2 molecule is collinear with the threefold axis of the NH3. The dependence of the observed absorption patterns on the concentration of H2 in the sample indicates that complexes of NH3 with two or more H2 molecules also form readily.  相似文献   

18.
Dimethylsilyl(2,3,4,5-tetramethylcyclopentadienyl)(3-tert-butyl-5-methyl-2-phenoxy)titanium dichloride (1a), a useful catalyst precursor for olefin copolymerization, was synthesized at high yield starting from allyl-protected phenolic ligand 3a,which was first treated with 2 equiv. of n-BuLi to selectively give the dilithium salt of 3a along with 1-heptene, a coupling product of a protected allyl ether moiety and butyl anion. Addition of TiCl4 to the resulting dilithium salt of 3a in toluene afforded 1a in 50% isolated yield. This methodology could be applied to the preparation of related titanium and zirconoium complexes 1b-1d, 8 with silicone-bridged Cp-phenoxy ligands, whereas the reaction starting from methyl-protected precursor 2a did not produce the zirconium complex 8. Copolymerization of ethylene and 1-hexene with the newly prepared complexes was also investigated.  相似文献   

19.
Gas-phase reactions between multiply charged positive and negative protein ions are carried out in a quadrupole ion trap mass spectrometer. The ions react with one another by proton transfer and complex formation. Proton transfer products and complexes are formed via competitive processes in single ion/ion encounters. The relative contributions of proton transfer versus complex formation are dependent upon the charges of the ions as well as other characteristics of the ions yet to be clearly delineated. No fragmentation of covalent bonds of the protein reactants is observed. A model that considers the trajectories associated with ion/ion interactions appears to hold the most promise in accounting for the results. The formation of bound ion/ion orbits appears to play an important role in determining overall reaction kinetics as well as the distribution of ion/ion reaction products. Tandem mass spectrometry is used to compare protein complexes formed in the gas-phase with those formed initially in solution and subsequently liberated by electrospray; it is shown that both forms of complex dissociate similarly, but the complexes formed in the gas phase can retain a "memory" of their method of formation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号