首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The title compounds, [Sn(C6H5)2(C5H4S5)] and [Sn(C5H4S5)2], respectively, are of interest because they can be regarded as intermediate in nature between chelates and heterocyclic compounds containing the C3S5 fragment. In contrast with the essentially normal bond lengths and angles within the mol­ecules, the molecular conformations are somewhat unexpected, as are the intermolecular contacts found in the case of the latter compound.  相似文献   

2.
The isomorphous structures of the title molecules, 4‐amino‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐3‐iodo‐1H‐pyrazolo‐[3,4‐d]pyrimidine, (I), C10H12IN5O3, and 4‐amino‐3‐bromo‐1‐(2‐deoxy‐β‐d ‐erythro‐pento­furan­osyl)‐1H‐pyrazolo[3,4‐d]­pyrimidine, (II), C10H12BrN5O3, have been determined. The sugar puckering of both compounds is C1′‐endo (1′E). The N‐­glycosidic bond torsion angle χ1 is in the high‐anti range [?73.2 (4)° for (I) and ?74.1 (4)° for (II)] and the crystal structure is stabilized by hydrogen bonds.  相似文献   

3.
The title compounds, C8H10O2, (I), and C12H14O2, (II), occurred as by‐products in the controlled synthesis of a series of bis­(gem‐alkynols), prepared as part of an extensive study of synthon formation in simple gem‐alkynol derivatives. The two 4‐(gem‐alkynol)‐1‐ones crystallize in space group P21/c, (I) with Z′ = 1 and (II) with Z′ = 2. Both structures are dominated by O—H?O=C hydrogen bonds, which form simple chains in the cyclo­hexane derivative, (I), and centrosymmetric dimers, of both symmetry‐independent mol­ecules, in the cyclo­hexa‐2,5‐diene, (II). These strong synthons are further stabilized by C[triple‐bond]C—H?O=C, Cmethylene—H?O(H) and Cmethyl—H?O(H) interactions. The direct intermolecular interactions between donors and acceptors in the gem‐alkynol group, which characterize the bis­(gem‐alkynol) analogues of (I) and (II), are not present in the ketone derivatives studied here.  相似文献   

4.
The crystal structures of 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl benzoate, C13H15NO5, (I), 2,2‐dimethyl‐5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C13H14ClNO5, (II), and 5‐nitroso‐1,3‐dioxan‐5‐yl 4‐chlorobenzoate, C11H11NO5, (III), have been determined in order to gain insight into the conformational preference of α‐benzoyloxynitroso. Unfavourable 1,3‐diaxial interactions force (I) and (II) to crystallize in the 2,5 twist‐boat conformation, whereas compound (III), lacking this destabilizing interaction, crystallizes in the chair conformation.  相似文献   

5.
In 1‐(4‐chloroanilinomethyl)‐5‐(4‐chlorophenyl)‐1,3,5‐triazinane‐2‐thione, C16H16Cl2N4S, there are two independent molecules in the asymmetric unit which form inversion dimers via two weak N—H...S hydrogen bonds. The dimers are then linked into C(9)C(14) chains by a C—H...S hydrogen bond and a C—H...Cl contact. In 1‐(anilinomethyl)‐5‐phenyl‐1,3,5‐triazinane‐2‐thione, C16H18N4S, molecules are linked into complex sheets via a combination of N—H...S and C—H...π hydrogen bonds.  相似文献   

6.
The title compounds, C20H20FNO6 and C20H19Cl2NO6, respectively, may exhibit bioactivity. In these compounds, the pyrrolidine ring adopts a conformation intermediate between envelope and half‐chair. Only one of the two ethoxy­carbonyl side chains is nearly planar. Centrosymmetric pairs are formed, and the crystal structure is stabilized by weak C—H⋯O hydrogen bonds and van der Waals interactions.  相似文献   

7.
In the crystal structures of the title compounds, C6H2I2N2S, (I), and C12H4I2N4S2, (II), respectively, a large number of short inter‐heteroatom contacts, such as S?N, I?I and N?I, are observed. In (II), which is non‐centrosymmetric, two halves of the mol­ecule are related by a crystallographic twofold axis.  相似文献   

8.
This study of 3‐(5‐phenyl‐1,3,4‐oxadiazol‐2‐yl)‐2H‐chromen‐2‐one, C17H10N2O3, 1 , and 3‐[5‐(pyridin‐4‐yl)‐1,3,4‐oxadiazol‐2‐yl]‐2H‐chromen‐2‐one, C16H9N3O3, 2 , was performed on the assumption of the potential anticancer activity of the compounds. Three polymorphic structures for 1 and two polymorphic structures for 2 have been studied thoroughly. The strongest intermolecular interaction is stacking of the `head‐to‐head' type in all the studied crystals. The polymorphic structures of 1 differ with respect to the intermolecular interactions between stacked columns. Two of the polymorphs have a columnar or double columnar type of crystal organization, while the third polymorphic structure can be classified as columnar‐layered. The difference between the two structures of 2 is less pronounced. Both crystals can be considered as having very similar arrangements of neighbouring columns. The formation of polymorphic modifications is caused by a subtle balance of very weak intermolecular interactions and packing differences can be identified only using an analysis based on a study of the pairwise interaction energies.  相似文献   

9.
N‐(2‐Bromoethyl)‐4‐piperidino‐1,8‐naphthalimide, C19H19BrN2O2, (I), and N‐(3‐bromopropyl)‐4‐piperidino‐1,8‐naphthalimide, C20H21BrN2O2, (II), are an homologous pair of 1,8‐naphthalimide derivatives. The naphthalimide units are planar and each piperidine substituent adopts a chair conformation. This study emphasizes the importance of π‐stacking interactions, often augmented by other contacts, in determining the crystal structures of 1,8‐naphthalimide derivatives.  相似文献   

10.
The supramolecular structure of the title compound, C18H17ClN2O2, is determined by the intersection of two chains formed by N—H⋯O and N—H⋯N hydrogen bonds, forming a two‐dimensional sheet.  相似文献   

11.
The title compound, {[Cu4(C3H4NS2)4]·2H2O}n, was produced by diffusing a solution of 2‐mercapto­thia­zoline in tetra­hydro­furan into a solution of CuCl in CH3CN at room temperature. The structure is characterized by self‐assembled one‐dimensional chains that are condensed from butterfly‐like [Cu(C3H4NS2)]4 tetrameric units via double S‐bridging at opposite ends. The Cu—Cu distances within the Cu4 butterfly cluster are in the range 2.7103 (10)–2.9764 (10) Å, while the shortest Cu?Cu intercluster distance is 3.468 (1) Å, much longer than the sum of the van der Waals radii.  相似文献   

12.
The structures of the title compounds, C15H13N3O4, (I), and C16H15N3O5 [IUPAC name: ethyl 6‐amino‐5‐cyano‐2‐methyl‐4‐(3‐nitro­phenyl)‐4H‐pyrano‐3‐carboxyl­ate], (II), are very similar, with the heterocyclic rings adopting boat conformations. The pseudo‐axial m‐nitro­phenyl substituents are rotated by 84.0 (1) and 98.7 (1)° in (I) and (II), respectively, with respect to the four coplanar atoms of the boat. The dihedral angles between the phenyl rings and nitro groups are 12.1 (2) and 8.4 (2)° in (I) and (II), respectively. The two compounds have similar patterns of intermolecular N—H?O and N—H?N hydrogen bonding, which link mol­ecules into infinite tapes along b .  相似文献   

13.
The molecules of the title compounds, C16H15NOS2, (I), and C16H13Br2NOS2, (II), are E,E‐isomers and consist of an extensive conjugated system, which determines their molecular geometries. Compound (I) crystallizes in the monoclinic space group P21/c. It has one thiophene ring disordered over two positions, with a minor component contribution of 0.100 (3). Compound (II) crystallizes in the noncentrosymmetric orthorhombic space group Pca21 with two independent molecules in the unit cell. These molecules are related by a noncrystallographic pseudo‐inversion center and possess very similar geometries. The crystal packings of (I) and (II) have a topologically common structural motif, viz. stacks along the b axis, in which the molecules are bound by weak C—H...O hydrogen bonds. The noncentrosymmetric packing of (II) is governed by attractive intermolecular Br...Br and Br...N interactions, which are also responsible for the very high density of (II) (1.861 Mg m−3).  相似文献   

14.
Crystals of the title compound, C4H8N5+·C2F3O2, are built up of singly protonated 2,4‐diamino‐6‐methyl‐1,3,5‐triazin‐1‐ium cations and trifluoroacetate anions. The CF3 group of the anion is disordered. The oppositely charged ions interact via almost linear N—H...O hydrogen bonds, forming a CF3COO...C4H8N5+ unit. Two units related by an inversion centre interact through a pair of N—H...N hydrogen bonds, forming planar (CF3COO...C4H8N5+...C4H8N5+·CF3COO) aggregates that are linked by a pair of N—H...O hydrogen bonds into chains running along the c axis.  相似文献   

15.
In the title compounds, C18H20N2O2, (I), and C14H11N3O4·0.5H2O, (II), respectively, the oxime groups have an E configuration. In (I), the mol­ecules exist as polymers bound by intermolecular C—H⋯O and O—H⋯N hydrogen bonds around inversion centres. In (II), intermolecular OW—H⋯N, OW—H⋯O and O—H⋯OW interactions stabilize the molecular packing.  相似文献   

16.
3‐Deoxy‐3‐fluoro‐d ‐glucopyranose crystallizes from acetone to give a unit cell containing two crystallographically independent molecules. One of these molecules (at site A) is structurally homogeneous and corresponds to 3‐deoxy‐3‐fluoro‐β‐d ‐glucopyranose, C6H11FO5, (I). The second molecule (at site B) is structurally heterogeneous and corresponds to a mixture of (I) and 3‐deoxy‐3‐fluoro‐α‐d ‐glucopyranose, (II); treatment of the diffraction data using partial‐occupancy oxygen at the anomeric center gave a high‐quality packing model with an occupancy ratio of 0.84:0.16 for (II):(I) at site B. The mixture of α‐ and β‐anomers at site B appears to be accommodated in the lattice because hydrogen‐bonding partners are present to hydrogen bond to the anomeric OH group in either an axial or equatorial orientation. Cremer–Pople analysis of (I) and (II) shows the pyranosyl ring of (II) to be slightly more distorted than that of (I) [θ(I) = 3.85 (15)° and θ(II) = 6.35 (16)°], but the general direction of distortion is similar in both structures [ϕ(I) = 67 (2)° (BC1,C4) and ϕ(II) = 26.0 (15)° (C3TBC1); B = boat conformation and TB = twist‐boat conformation]. The exocyclic hydroxymethyl (–CH2OH) conformation is gg (gauchegauche) (H5 anti to O6) in both (I) and (II). Structural comparisons of (I) and (II) to related unsubstituted, deoxy and fluorine‐substituted monosaccharides show that the gluco ring can assume a wide range of distorted chair structures in the crystalline state depending on ring substitution patterns.  相似文献   

17.
In the title compound, C8H22Cl2N2Si3, the central Si atom is tetrahedrally coordinated by two Cl and two N atoms in a molecule that has crystallographically imposed C2 symmetry. Comparison is made with the isomorphous structure having titanium instead of silicon at the central position in the diazacyclopentane ring [Tinkler, Deeth, Duncalf & McCamley (1996). Chem. Commun. pp. 2623–2624].  相似文献   

18.
In 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (6‐aza‐2′‐deoxy­uridine), C8H11N3O5, (I), the conformation of the glycosylic bond is between anti and high‐anti [χ = −94.0 (3)°], whereas the derivative 2‐(2‐deoxy‐β‐d ‐erythro‐pentofuranosyl)‐N4‐(2‐methoxy­benzoyl)‐1,2,4‐triazine‐3,5(2H,4H)‐dione (N3‐anisoyl‐6‐aza‐2′‐deoxy­uridine), C16H17N3O7, (II), displays a high‐anti conformation [χ = −86.4 (3)°]. The furanosyl moiety in (I) adopts the S‐type sugar pucker (2T3), with P = 188.1 (2)° and τm = 40.3 (2)°, while the sugar pucker in (II) is N (3T4), with P = 36.1 (3)° and τm = 33.5 (2)°. The crystal structures of (I) and (II) are stabilized by inter­molecular N—H⋯O and O—H⋯O inter­actions.  相似文献   

19.
The crystal structures of the title compounds, viz. C24H14F2N2O2, (I), and C25H17FN2O2, (II), respectively, have been determined in order to unravel the role of an ordered F atom in generating stable supra­molecular assemblies. On changing the substitution from fluorine to a methyl group, C—H⋯F inter­actions are replaced by C—H⋯π inter­actions, revealing the importance of such weak inter­actions when present alongside N—H⋯O and C—H⋯O hydrogen bonds. The dihedral angle between the planes of the 4‐fluoro­phenyl ring and the pyridine ring is 26.8 (1)° in (I), while that between the planes of the 4‐methyl­phenyl and pyridine rings is 29.5 (1)° in (II).  相似文献   

20.
The structure of the title compound, alternatively called bis(μ‐tetramethyldistibinediyl)bis(tetracarbonylchromium), [Cr2Sb4(CH3)8(CO)8], consists of two Me4Sb2 bridging units between Cr(CO)4 complex fragments. The centre of the molecule is located on a special position of 2/m symmetry. This is the first characterized Sb4Cr2 heterocycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号