首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we given some basic characterizations of minimal Markov basis for a connected Markov chain, which is used for performing exact tests in discrete exponential families given a sufficient statistic. We also give a necessary and sufficient condition for uniqueness of minimal Markov basis. A general algebraic algorithm for constructing a connected Markov chain was given by Diaconis and Sturmfels (1998,The Annals of Statistics,26, 363–397). Their algorithm is based on computing Gröbner basis for a certain ideal in a polynomial ring, which can be carried out by using available computer algebra packages. However structure and interpretation of Gröbner basis produced by the packages are sometimes not clear, due to the lack of symmetry and minimality in Gröbner basis computation. Our approach clarifies partially ordered structure of minimal Markov basis.  相似文献   

2.
This article presents a computational approach for generating Markov bases for multiway contingency tables whose cell counts might be constrained by fixed marginals and by lower and upper bounds. Our framework includes tables with structural zeros as a particular case. Instead of computing the entire Markov bases in an initial step, our framework finds sets of local moves that connect each table in the reference set with a set of neighbor tables. We construct a Markov chain on the reference set of tables that requires only a set of local moves at each iteration. The union of these sets of local moves forms a dynamic Markov basis. We illustrate the practicality of our algorithms in the estimation of exact p-values for a three-way table with structural zeros and a sparse eight-way table. This article has online supplementary materials.  相似文献   

3.
Summary  In the inference of contingency table, when the cell counts are not large enough for asymptotic approximation, conditioning exact method is used and often computationally impractical for large tables. Instead, various sampling methods can be used. Based on permutation, the Monte Carlo sampling may become again impractical for large tables. For this, existing the Markov chain method is to sample a few elements of the table at each iteration and is inefficient. Here we consider a Markov chain, in which a sub-table of user specified size is updated at each iteration, and it achieves high sampling efficiency. Some theoretical properties of the chain and its applications to some commonly used tables are discussed. As an illustration, this method is applied to the exact test of the Hardy-Weinberg equilibrium in the population genetics context.  相似文献   

4.
This article introduces a model that can be considered as an autoregressive extension of the ordered probit model. For parameter estimation we first develop a standard Gibbs sampler which however exhibits bad convergence properties. Using a special transformation group on the sample space we develop a grouped move multigrid Monte Carlo (GM-MGMC) Gibbs sampler and illustrate its fundamental superiority in convergence compared to the standard sampler. To be able to compare the autoregressive ordered probit (AOP) model to other models we further provide an estimation procedure for the marginal likelihood which enables us to compute Bayes factors. We apply the new model to absolute price changes of the IBM stock traded on December 4, 2000, at the New York Stock Exchange. To detect whether the data contain an autoregressive structure we then fit the AOP model as well as the common ordered probit (OP) model to the data. By estimating the corresponding Bayes factor we show that the AOP model fits the data decisively better than the common OP model.  相似文献   

5.
Abstract

Current Gibbs sampling schemes in mixture of Dirichlet process (MDP) models are restricted to using “conjugate” base measures that allow analytic evaluation of the transition probabilities when resampling configurations, or alternatively need to rely on approximate numeric evaluations of some transition probabilities. Implementation of Gibbs sampling in more general MDP models is an open and important problem because most applications call for the use of nonconjugate base measures. In this article we propose a conceptual framework for computational strategies. This framework provides a perspective on current methods, facilitates comparisons between them, and leads to several new methods that expand the scope of MDP models to nonconjugate situations. We discuss one in detail. The basic strategy is based on expanding the parameter vector, and is applicable for MDP models with arbitrary base measure and likelihood. Strategies are also presented for the important class of normal-normal MDP models and for problems with fixed or few hyperparameters. The proposed algorithms are easily implemented and illustrated with an application.  相似文献   

6.
Hidden Markov models are used as tools for pattern recognition in a number of areas, ranging from speech processing to biological sequence analysis. Profile hidden Markov models represent a class of so-called “left–right” models that have an architecture that is specifically relevant to classification of proteins into structural families based on their amino acid sequences. Standard learning methods for such models employ a variety of heuristics applied to the expectation-maximization implementation of the maximum likelihood estimation procedure in order to find the global maximum of the likelihood function. Here, we compare maximum likelihood estimation to fully Bayesian estimation of parameters for profile hidden Markov models with a small number of parameters. We find that, relative to maximum likelihood methods, Bayesian methods assign higher scores to data sequences that are distantly related to the pattern consensus, show better performance in classifying these sequences correctly, and continue to perform robustly with regard to misspecification of the number of model parameters. Though our study is limited in scope, we expect our results to remain relevant for models with a large number of parameters and other types of left–right hidden Markov models.  相似文献   

7.
    
The gamma distribution arises frequently in Bayesian models, but there is not an easy-to-use conjugate prior for the shape parameter of a gamma. This inconvenience is usually dealt with by using either Metropolis–Hastings moves, rejection sampling methods, or numerical integration. However, in models with a large number of shape parameters, these existing methods are slower or more complicated than one would like, making them burdensome in practice. It turns out that the full conditional distribution of the gamma shape parameter is well approximated by a gamma distribution, even for small sample sizes, when the prior on the shape parameter is also a gamma distribution. This article introduces a quick and easy algorithm for finding a gamma distribution that approximates the full conditional distribution of the shape parameter. We empirically demonstrate the speed and accuracy of the approximation across a wide range of conditions. If exactness is required, the approximation can be used as a proposal distribution for Metropolis–Hastings. Supplementary material for this article is available online.  相似文献   

8.
This article proposes a four-pronged approach to efficient Bayesian estimation and prediction for complex Bayesian hierarchical Gaussian models for spatial and spatiotemporal data. The method involves reparameterizing the covariance structure of the model, reformulating the means structure, marginalizing the joint posterior distribution, and applying a simplex-based slice sampling algorithm. The approach permits fusion of point-source data and areal data measured at different resolutions and accommodates nonspatial correlation and variance heterogeneity as well as spatial and/or temporal correlation. The method produces Markov chain Monte Carlo samplers with low autocorrelation in the output, so that fewer iterations are needed for Bayesian inference than would be the case with other sampling algorithms. Supplemental materials are available online.  相似文献   

9.
In this paper we analyse applicability and robustness of Markov chain Monte Carlo algorithms for eigenvalue problems. We restrict our consideration to real symmetric matrices.

Almost Optimal Monte Carlo (MAO) algorithms for solving eigenvalue problems are formulated. Results for the structure of both – systematic and probability error are presented. It is shown that the values of both errors can be controlled independently by different algorithmic parameters. The results present how the systematic error depends on the matrix spectrum. The analysis of the probability error is presented. It shows that the close (in some sense) the matrix under consideration is to the stochastic matrix the smaller is this error. Sufficient conditions for constructing robust and interpolation Monte Carlo algorithms are obtained. For stochastic matrices an interpolation Monte Carlo algorithm is constructed.

A number of numerical tests for large symmetric dense matrices are performed in order to study experimentally the dependence of the systematic error from the structure of matrix spectrum. We also study how the probability error depends on the balancing of the matrix.  相似文献   


10.
Pattern Hit-and-Run (PHR) is a Markov chain Monte Carlo sampler for a target distribution that was originally designed for general sets embedded in a box. A specific set of interest to many applications is a polytope intersected with discrete or mixed continuous/discrete lattices. PHR requires an acceptance/rejection mechanism along a bidirectional walk to guarantee feasibility. We remove this inefficiency by utilizing the linearity of the constraints defining the polytope, so each iteration of PHR can be efficiently implemented even though the variables are allowed to be integer valued. Moreover, PHR converges to a uniform distribution in polynomial time for a class of discrete polytopes.  相似文献   

11.
Abstract

In this article we discuss the problem of assessing the performance of Markov chain Monte Carlo (MCMC) algorithms on the basis of simulation output. In essence, we extend the original ideas of Gelman and Rubin and, more recently, Brooks and Gelman, to problems where we are able to split the variation inherent within the MCMC simulation output into two distinct groups. We show how such a diagnostic may be useful in assessing the performance of MCMC samplers addressing model choice problems, such as the reversible jump MCMC algorithm. In the model choice context, we show how the reversible jump MCMC simulation output for parameters that retain a coherent interpretation throughout the simulation, can be used to assess convergence. By considering various decompositions of the sampling variance of this parameter, we can assess the performance of our MCMC sampler in terms of its mixing properties both within and between models and we illustrate our approach in both the graphical Gaussian models and normal mixtures context. Finally, we provide an example of the application of our diagnostic to the assessment of the influence of different starting values on MCMC simulation output, thereby illustrating the wider utility of our method beyond the Bayesian model choice and reversible jump MCMC context.  相似文献   

12.
A current challenge for many Bayesian analyses is determining when to terminate high-dimensional Markov chain Monte Carlo simulations. To this end, we propose using an automated sequential stopping procedure that terminates the simulation when the computational uncertainty is small relative to the posterior uncertainty. Further, we show this stopping rule is equivalent to stopping when the effective sample size is sufficiently large. Such a stopping rule has previously been shown to work well in settings with posteriors of moderate dimension. In this article, we illustrate its utility in high-dimensional simulations while overcoming some current computational issues. As examples, we consider two complex Bayesian analyses on spatially and temporally correlated datasets. The first involves a dynamic space-time model on weather station data and the second a spatial variable selection model on fMRI brain imaging data. Our results show the sequential stopping rule is easy to implement, provides uncertainty estimates, and performs well in high-dimensional settings. Supplementary materials for this article are available online.  相似文献   

13.
The Dirichlet process and its extension, the Pitman–Yor process, are stochastic processes that take probability distributions as a parameter. These processes can be stacked up to form a hierarchical nonparametric Bayesian model. In this article, we present efficient methods for the use of these processes in this hierarchical context, and apply them to latent variable models for text analytics. In particular, we propose a general framework for designing these Bayesian models, which are called topic models in the computer science community. We then propose a specific nonparametric Bayesian topic model for modelling text from social media. We focus on tweets (posts on Twitter) in this article due to their ease of access. We find that our nonparametric model performs better than existing parametric models in both goodness of fit and real world applications.  相似文献   

14.
We study the problem of sampling uniformly at random from the set of k-colorings of a graph with maximum degree Δ. We focus attention on the Markov chain Monte Carlo method, particularly on a popular Markov chain for this problem, the Wang–Swendsen–Kotecký (WSK) algorithm. The second author recently proved that the WSK algorithm quickly converges to the desired distribution when k11Δ/6. We study how far these positive results can be extended in general. In this note we prove the first non-trivial results on when the WSK algorithm takes exponentially long to reach the stationary distribution and is thus called torpidly mixing. In particular, we show that the WSK algorithm is torpidly mixing on a family of bipartite graphs when 3k<Δ/(20logΔ), and on a family of planar graphs for any number of colors. We also give a family of graphs for which, despite their small chromatic number, the WSK algorithm is not ergodic when kΔ/2, provided k is larger than some absolute constant k0.  相似文献   

15.
The pseudo likelihood method of Besag (1974) has remained a popular method for estimating Markov random field on a very large lattice, despite various documented deficiencies. This is partly because it remains the only computationally tractable method for large lattices. We introduce a novel method to estimate Markov random fields defined on a regular lattice. The method takes advantage of conditional independence structures and recursively decomposes a large lattice into smaller sublattices. An approximation is made at each decomposition. Doing so completely avoids the need to compute the troublesome normalizing constant. The computational complexity is O(N), where N is the number of pixels in the lattice, making it computationally attractive for very large lattices. We show through simulations, that the proposed method performs well, even when compared with methods using exact likelihoods. Supplementary material for this article is available online.  相似文献   

16.
This article aims to provide a method for approximately predetermining convergence properties of the Gibbs sampler. This is to be done by first finding an approximate rate of convergence for a normal approximation of the target distribution. The rates of convergence for different implementation strategies of the Gibbs sampler are compared to find the best one. In general, the limiting convergence properties of the Gibbs sampler on a sequence of target distributions (approaching a limit) are not the same as the convergence properties of the Gibbs sampler on the limiting target distribution. Theoretical results are given in this article to justify that under conditions, the convergence properties of the Gibbs sampler can be approximated as well. A number of practical examples are given for illustration.  相似文献   

17.
We propose a Bayesian approach for inference in the multivariate probit model, taking into account the association structure between binary observations. We model the association through the correlation matrix of the latent Gaussian variables. Conditional independence is imposed by setting some off-diagonal elements of the inverse correlation matrix to zero and this sparsity structure is modeled using a decomposable graphical model. We propose an efficient Markov chain Monte Carlo algorithm relying on a parameter expansion scheme to sample from the resulting posterior distribution. This algorithm updates the correlation matrix within a simple Gibbs sampling framework and allows us to infer the correlation structure from the data, generalizing methods used for inference in decomposable Gaussian graphical models to multivariate binary observations. We demonstrate the performance of this model and of the Markov chain Monte Carlo algorithm on simulated and real datasets. This article has online supplementary materials.  相似文献   

18.
Hidden Markov random fields represent a complex hierarchical model, where the hidden latent process is an undirected graphical structure. Performing inference for such models is difficult primarily because the likelihood of the hidden states is often unavailable. The main contribution of this article is to present approximate methods to calculate the likelihood for large lattices based on exact methods for smaller lattices. We introduce approximate likelihood methods by relaxing some of the dependencies in the latent model, and also by extending tractable approximations to the likelihood, the so-called pseudolikelihood approximations, for a large lattice partitioned into smaller sublattices. Results are presented based on simulated data as well as inference for the temporal-spatial structure of the interaction between up- and down-regulated states within the mitochondrial chromosome of the Plasmodium falciparum organism. Supplemental material for this article is available online.  相似文献   

19.
We present an extension of continuous domain Simulated Annealing. Our algorithm employs a globally reaching candidate generator, adaptive stochastic acceptance probabilities, and converges in probability to the optimal value. An application to simulation-optimization problems with asymptotically diminishing errors is presented. Numerical results on a noisy protein-folding problem are included.  相似文献   

20.
In many applications of Markov chains, and especially in Markov chain Monte Carlo algorithms, the rate of convergence of the chain is of critical importance. Most techniques to establish such rates require bounds on the distribution of the random regeneration time T that can be constructed, via splitting techniques, at times of return to a “small set” C satisfying a minorisation condition P(x,·)(·), xC. Typically, however, it is much easier to get bounds on the time τC of return to the small set itself, usually based on a geometric drift function , where . We develop a new relationship between T and τC, and this gives a bound on the tail of T, based on ,λ and b, which is a strict improvement on existing results. When evaluating rates of convergence we see that our bound usually gives considerable numerical improvement on previous expressions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号