首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Symmetry considerations yield the general form, up to second order terms, for the deformation elastic energy of a nematic monolayer, composed by symmetric achiral molecules, on a rigid planar substrate. The deformation energy contains an elastic contribution linear in the deformation tensor, whose elements are the spatial derivatives of the average molecular orientation. This linear Lifshitz-invariant-like term can be responsible for a ground state of the nematic monolayer periodically deformed if the relevant elastic constant is stiffer than a critical value. The wave-length of the modulation diverges at the transition threshold. We show that only large variations of the tilt angle form stable states. The effect of a destabilizing electric or magnetic field on the layer is to induce (i) the transition towards the tilt-modulated phase, while (ii) for higher enough values of the field the modulation is destroyed.  相似文献   

2.
The optical birefringence of rodlike nematogens (7CB, 8CB), imbibed in parallel silica channels with 10 nm diameter and 300 microm length, is measured and compared to the thermotropic bulk behavior. The orientational order of the confined liquid crystals, quantified by the uniaxial nematic ordering parameter, evolves continuously between paranematic and nematic states, in contrast to the discontinuous isotropic-to-nematic bulk phase transitions. A Landau-de Gennes model reveals that the strength of the orientational ordering fields, imposed by the silica walls, is beyond a critical threshold, that separates discontinuous from continuous paranematic-to-nematic behavior. Quenched disorder effects, attributable to wall irregularities, leave the transition temperatures affected only marginally, despite the strong ordering fields in the channels.  相似文献   

3.
Experimental measurements and a thermodynamic model reveal that nematic elasticity can induce lateral phase separation of amphiphilic molecules assembled at interfaces between thermotropic liquid crystals (LCs) and immiscible aqueous phases. The morphologies of the phase-separated domains of amphiphiles induced by nematic elasticity are shown to be strongly dependent on the nature of the deformation of the LC. This study provides important insight into the physics that controls the ordering of molecules at interfaces of soft anisotropic materials, and identifies a new mechanism of phase separation at these interfaces.  相似文献   

4.
We study the active dynamics of single and interacting cytoskeletal filaments in motility assays, in which immobilized motor proteins bind the filaments to a surface and actively pull them along this surface. We present a model which couples the overdamped dynamics of filaments, the active dynamics of motor heads, and the elasticity of motor stalks and which can be used for Langevin dynamics simulations. Single filaments perform a persistent random walk, which we characterize by several simulation results. For interacting filaments with a repulsive interaction of filaments, the motor-driven dynamics of filaments leads to a non-equilibrium phase transition which generalizes the isotropic-nematic phase transition of the corresponding equilibrium system, the hard-rod fluid. Langevin dynamics simulations and analytical theory show that the motor activity enhances the tendency for nematic ordering.  相似文献   

5.
We develop a hybrid Monte Carlo approach for modelling nematic liquid crystals of homopolymer melts. The polymer architecture is described with a discrete worm-like chain model. A quadratic density functional accounts for the limited compressibility of the liquid, while an additional quadratic functional of the local orientation tensor of the segments captures the nematic ordering. The approach can efficiently address large systems parametrized according to volumetric and conformational properties, representative of real polymeric materials. The results of the simulations regarding the influence of the molecular weight on the isotropic-nematic transition are compared to predictions from a Landau-de Gennes free energy expansion. The formation of the nematic phase is addressed within Rouse-like dynamics, realized using the current model.  相似文献   

6.
We present results of the deuteron nuclear magnetic resonance (NMR) and small-angle X-ray scattering (SAXS) study of ordering and phase transition behavior of octylcyanobiphenyl (8CB) liquid crystal confined to a controlled-pore glass (CPG) with nontreated and silanes-treated pore surfaces. The deuteron NMR spectra allowed to determine the degree of nematic liquid crystal ordering and also provided an indirect information on the confined 8CB smectic ordering via its influence on the nematic ordering. For the smectic phase these data are supplemented with measurements of the temperature dependence of the first-order SAXS diffraction pattern. The NMR results indicate that the average nematic and smectic order parameters of 8CB in the nontreated CPG are only weakly perturbed by the confinement. The SAXS data further suggest that in confined 8CB for both nontreated and silane-treated CPG a domainlike pattern appears in accordance with the Imry-Ma theorem.  相似文献   

7.
We study theoretically the destruction of spin nematic order due to quantum fluctuations in quasi-one-dimensional spin-1 magnets. If the nematic ordering is disordered by condensing disclinations, then quantum Berry phase effects induce dimerization in the resulting paramagnet. We develop a theory for a Landau-forbidden second order transition between the spin nematic and dimerized states found in recent numerical calculations. Numerical tests of the theory are suggested.  相似文献   

8.
9.
A modified Gruhn–Hess pair potential model, where the potential parameters related to the elastic constants are different from the original model, was investigated with the aid of Monte Carlo (MC) simulation and Mean Field (MF) theory based upon a two-dimensional nematic lattice model. The model produces a ground state in perfect nematic order, where particles are aligned in the lattice plane. Both the MF predictions and the simulation results for the second-rank ordering tensor show that the system is biaxial in the low-temperature region, with a positive primary order parameter and the main director aligned along the lattice axis. A transition to uniaxial order takes place at higher temperatures with a negative primary order parameter and the director is orthogonal to the lattice plane. This orientational order survives up to temperatures higher than the transition temperature of the three-dimensional lattice model, possibly at all finite temperatures. MF predictions agree qualitatively with simulation but, in quantitative terms, the transition temperature is overestimated by 52%.  相似文献   

10.
The ordering of hydrocarbon end-chains in nematic liquid crystals has been calculated by numerical summation over all chain configurations in the molecular field. The results, used in a self-consistent calculation of the orientational ordering for the full system, explain the variation of the isotropic-nematic transition temperatures (including the even-odd effect) and transition entropies with end-chain length.  相似文献   

11.
We have analyzed molecular ordering in a nematic sample sandwiched between two parallel substrates, characterized by a periodically varying anchoring easy axis. If the periodicity lambda is smaller than the Debye screening length l(D) and the nematic material possesses flexoelectric properties, it is necessary to take into account also the electrostatic and flexoelectric contributions in the thermodynamical potential when the actual director field is determined. In this framework, for small deviations from the homeotropic alignment we have derived analytical expressions for the tilt angle (theta) and the electrical potential. To establish a connection with experimentally observable quantities, we have related the theta profile to the average and investigated its behavior for different values of lambda, the flexoelectric coefficient, and the anchoring strength w. Our results indicate that in a nematic with pronounced flexoelectric properties for small enough lambda, a kind of subsurface deformation appears, which substantially decreases . Therefore, effects of flexoelectricity cannot be neglected in treating nematic cells with modulated anchoring which allows bistable ordering.  相似文献   

12.
The isotropic-to-nematic transition in an athermal solution of long rigid rods subject to a gravitational (or centrifugal) field is theoretically considered in the Onsager approximation. The new feature emerging in the presence of gravity is a concentration gradient that coupled with the nematic ordering. For rodlike molecules this effect becomes noticeable at centrifugal acceleration g approximately 10(3)-10(4) m/s(2), while for biological rodlike objects, such as tobacco mosaic virus, the effect is important even for normal gravitational acceleration conditions. Rods are concentrated near the bottom of the vessel, which sometimes leads to gravity induced nematic ordering. The concentration range corresponding to phase separation increases with increasing g. In the region of phase separation the local rod concentration, as well as the order parameter, follow a step function with height.  相似文献   

13.
14.
Free energy of semiflexible polymers and structure of interfaces   总被引:1,自引:0,他引:1  
The free energy of semiflexible polymers is calculated as a functional of the compositional scalar order parameter and the orientational order parameter of second-rank tensor Sij on the basis of a microscopic model of wormlike chains with variable segment lengths. We use a density functional theory and a gradient expansion to evaluate the entropic part of the free energy, which is given in a power series of .The interaction term of the free energy is derived with a random phase approximation. For the rigid rod limit, the nematic-isotropic transition point is given by , N and w being the degree of polymerization and the anisotropic interaction parameter, respectively, and the degree of ordering at the transition point is 0.33448. We also find that the contour length of polymer chains becomes larger in a nematic phase than in an isotropic phase. Interface profiles are obtained numerically for some typical cases. In the neighborhood of isotropic-isotropic interfaces, polymer chains tend to align parallel to the interface on the polymer-rich side and perpendicular on the poor side. When an isotropic region and a nematic region coexist, orientational order parallel to the interface is preferred in the nematic region. Received: 28 May 1998 / Revised: 12 August 1998 / Accepted: 8 September 1998  相似文献   

15.
An expression for the surface excess stress tensor for planar compressible interfaces between rod-like nematic liquid crystals and isotropic viscous fluids is derived using the classical surface excess theory formalism, adapted to capture the intrinsic anisotropy of the nematic orientational ordering. A required step in the theory is to find the actual stress tensor in the three-dimensional interfacial region, which is obtained by a decomposition of the kinematic fields (rate of deformation tensor and director Jaumann derivative) into tangential, normal, and mixed components with respect to the interface. The viscosity coefficients appearing in the surface excess stress tensor are expressed in terms of interfacial and bulk viscosities for planar, constant orientation, flows. The expressions are used to define the three fundamental surface excess Miesowicz shear viscosities, in analogy with the three bulk Miesowicz shear viscosities. The ordering in the magnitudes of the surface excess Miesowicz shear viscosities is shown to depend on the magnitude of the surface scalar nematic order parameter relative to that of the adjoining bulk nematic phase. When the surface scalar order parameter is greater than in the bulk, the classical ordering in terms of magnitudes of the three bulk Miesowicz shear viscosities is recovered. On the other hand, when the surface scalar order parameter is smaller than in the bulk, the classical ordering in terms of magnitudes of the three viscosities does not hold, and inequality transitions are predicted as the surface scalar order parameter increases towards the bulk value. Received 5 July 1999 and Received in final form 16 November 1999  相似文献   

16.
We report a combined theoretical and experimental study of linear viscoelastic response in oriented monodomain nematic elastomers. The model predicts a dramatic decrease in the dynamic modulus in certain deformation geometries in an elastic medium with an independently mobile internal degree of freedom, the nematic director with its own relaxation dynamics. Dynamic mechanical measurements on monodomain nematic elastomers confirm our predictions of dependence on shear geometry and on nematic order, and also show a very substantial mechanical loss clearly associated with director relaxation.  相似文献   

17.
Nematic ordering in anisotropic non-Gaussian elastomers is considered theoretically using mean field approximation. We focus on the effect of anisotropy during network cross-linking on the system elasticity and, in particular, on the so-called soft deformation mode. As the main result, we calculate the dependence of the elastomer free energy on the angle between the axis of “frozen” anisotropy and the nematic director. The dependence of the isotropic-nematic transition point on the orientational field acting on the monomers during the cross-linking process is also calculated. Received: 5 November 1997 / Revised and Accepted: 29 June 1998  相似文献   

18.
A molecular theory of biaxial nematic ordering in the system of bent-core molecules has been developed in the two-particle cluster approximation which enables one to take into account short-range polar correlations determined by both electrostatic dipole-dipole interaction and polar molecular shape. All orientational order parameters and short-range correlation functions are calculated numerically as functions of temperature in the uniaxial and in the biaxial nematic phases, and the results are compared with the ones obtained in the mean-field approximation and in the cluster approximation but without taking into consideration the dipole-dipole interaction. It is shown that short-range polar correlations and, in particular, the dipole-dipole correlations dramatically increase the temperature of the transition into the biaxial nematic phase and enhancing its stability range. The results are also very sensitive to the value of the opening angle of a model bent-core molecule.  相似文献   

19.
A statistical theory is proposed to describe a suspension of carbon nanotubes in a nematic liquid crystal. The mean-field approach is used, and dispersion attraction, the excluded volume effects, the diamagnetism of liquid crystal molecules, and the strong diamagnetism of nanotubes are taken into account. The influence of the volume fraction of impurity, temperature, and magnetic field on the orientational ordering of a liquid crystal matrix and carbon nanotubes is studied. The concentration and temperature phase transitions in the suspension are investigated for various magnetic fields. The concentration and field shifts of the point of the phase transition between nematic and isotropic or paranematic phases are studied.  相似文献   

20.
Linear stability analysis of capillary instabilities in a thin nematic liquid crystalline cylindrical fiber embedded in an immiscible viscous matrix is performed by formulating and solving the governing nemato-capillary equations, that include the effect of temperature on the nematic ordering as well as the effect of the nematic orientation. A representative axial nematic orientation texture with the planar easy axis at the fiber surface is studied. The surface disturbance is expressed in normal modes, which include the azimuthal wave number m to take into account non-axisymmetric modes. Capillary instabilities in nematic fibers reflect the anisotropic nature of liquid crystals, such as the ordering and orientation contributions to the surface elasticity and surface normal and bending stresses. Surface gradients of normal and bending stresses provide additional anisotropic contributions to the capillary pressure that may renormalize the classical displacement and curvature forces that exist in any fluid fiber. The exact nature (stabilizing and destabilizing) and magnitude of the renormalization of the displacement and curvature forces depend on the nematic ordering and orientation, i.e. the anisotropic contribution to the surface energy, and accordingly capillary instabilities may be axisymmetric or non-axisymmetric. In addition, when the interface curvature effects are accounted for as contributions of the work of interfacial bending and torsion to the total energy of the system, the higher-order bending moment contribution to the surface stress tensor is critical in stabilizing the fiber instabilities. For the planar easy axis, the nematic ordering contribution to the surface energy, which renormalizes the effect of the fiber shape, plays a crucial role to determine the instability mechanisms. Moreover, the unstable modes, which are most likely observed, can be driven by the dependence of surface energy on the surface area. Low-ordering fibers display the classical axisymmetric mode, since the surface energy decreases by decreasing the surface area. Decreasing temperature gives rise to the encounter with a local maximum or to monotonic increase of the characteristic length of the axisymmetric mode. Meanwhile, in the presence of high surface ordering, non-axisymmetric finite wavelength instabilities emerge, with higher modes growing faster since the surface energy decreases by increasing the surface area. As temperature decreases, the pitches of the chiral microstructures become smaller. However, this non-axisymmetric instability mechanism can be regulated by taking account of the surface bending moment, which contains higher order variations in the interface curvatures. More and more non-axisymmetric modes emerge as temperature decreases, but, at constant temperature, only a finite number of non-axisymmetric modes are unstable and a single fastest growing mode emerges with lower and higher unstable modes growing slower. For nematic fibers, the classical fiber-to-droplet transformation is one of several possible instability pathways, while others include chiral microstructures. The capillary instabilities' growth rate of a thin nematic fiber in a viscous matrix is suppressed by increasing either the fiber or matrix viscosity, but the estimated droplet sizes after fiber breakup in axisymmetric instabilities decrease with increasing the matrix viscosity. Received 15 April 2002 and Received in final form 3 October 2002 RID="a" ID="a"e-mail: alejandro.rey@mcgill.ca  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号