首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of new imidazolyl and 1H-1,2,4-triazolyl derivatives of (η6-arene)(η5cyclopentadienyl)iron(II) salts have been prepared by reaction of the corresponding chloroarene complexes with the sodium salts of the heterocycles. Good yields of N-substituted products were obtained in all cases under very mild conditions. In contrast to substitution by primary and secondary amines, both chlorines were displaced from [(η5-1,2-dichlorobenzene)(η5-Cp)Fe][PF6], indicating electron withdrawal by the imidazolyl and triazolyl groups. Detailed 1H and 13C NMR analysis confirmed this point. NOE difference spectra were used for 13C assignments, and evidence for conformational isomers in the 1,2-disubstituted complexes is presented.  相似文献   

2.
Upon UV irradiation in hexane at 243 K tricarbonyl-η5-cyclohexadienyl-manganese (1) and two equivalents of 2-butyne (2) or diphenylacetylene (4) yield in successive [5 + 2, 3 + 2] cycloadditions tricarbonyl-η2:2:1-1,2,3,10-tetramethyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (6), or tricarbonyl-η2:2:1-1,2,3,10-tetraphenyl-tricyclo[5.2.1.04,9]-deca-2,5-dien-10-yl-manganese (8), respectively. 3-Hexyne (3) reacts with 1 under the same conditions by successive [5 + 2, 3 + 2] cycloadditions and 1,4-H-shift to tricarbonyl-η2:2:1-1,2,3-triethyl-10-ethylidene-tricyclo[5.2.1.04,9]dec-2-en-5-yl-manganse (7). Identical products are also obtained when 1 is first irradiated in THF at 208 K and the thermolabile intermediate, dicarbonyl-η5-cyclohexadienyl-tetrahydrofurane-manganese (11), is treated with an excess of the alkynes 2–4. In contrast, bis(trimethylsily)acetylene (5) substitutes photochemically in 1 only a CO ligand to yield dicarbonyl-η5-cyclohexadienyl-η2-bis(trimethylsily)Acetylene-manganese (9). The crystal and molecular structure of 7 was determined by an X-ray diffraction analysis. Complex 7 crystallizes in the triclinic space group , a = 822.6(2) pm, B = 882.5(2) pm, C = 1344.6(2) pm, = 92.36(2)°, β = 107.13(2)°, γ = 99.71(2)°, V = 0.9152(3) nm3, Z = 2. The complexes 6–9 were studied in solution by IR and NMR spectroscopy. The structures of 6,8 and 9 were elucidated from the NMR spectra. A possible formation mechanism for the complexes 6–9 will be discussed.  相似文献   

3.
Treatment of [Ru2(CO)4(MeCN)6][BF4]2 or [Ru2(CO)4(μ-O2CMe)2(MeCN)2] with uni-negative 1,1-dithiolate anions via potassium dimethyldithiocarbamate, sodium diethyldithiocarbamate, potassium tert-butylthioxanthate, and ammonium O,O′-diethylthiophosphate gives both monomeric and dimeric products of cis-[Ru(CO)22-(SS))2] ((SS)=Me2NCS2 (1), Et2NCS2 (2), tBuSCS2 (3), (EtO)2PS2 (4)) and [Ru(CO)(η2-(Me2NCS2))(μ,η2-Me2NCS2)]2 (5). The lightly stabilized MeCN ligands of [Ru2(CO)4(MeCN)6][BF4]2 are replaced more readily than the bound acetate ligands of [Ru2(CO)4(μ-O2CMe)2(MeCN)2] by thiolates to produce cis-[Ru(CO)22-(SS))2] with less selectivity. Structures 1 and 5 were determined by X-ray crystallography. Although the two chelating dithiolates are cis to each other in 1, the dithiolates are trans to each other in each of the {Ru(CO)(η2-Me2NCS2)2} fragment of 5. The dimeric product 5 can be prepared alternatively from the decarbonylation reaction of 1 with a suitable amount of Me3NO in MeCN. However, the dimer [Ru(CO)(η2-Et2NCS2)(μ,η2-Et2NCS2)]2 (6), prepared from the reaction of 2 with Me3NO, has a structure different from 5. The spectral data of 6 probably indicate that the two chelating dithiolates are cis to each other in one {Ru(CO)(η2-Et2NCS2)2}fragment but trans in the other. Both 5 and 6 react readily at ambient temperature with benzyl isocyanide to yield cis-[Ru(CO)(CNCH2Ph)(η2-(SS))2] ((SS)=Me2NCS2 (7) and Et2NCS2 (8)). A dimerization pathway for cis-[Ru(CO)22-(SS))2] via decabonylation and isomerization is proposed.  相似文献   

4.
The reaction of [Nb(η5-C5H4R)2X2] [1: R = SiMe3, X = Cl; 2: R = SiMe3, X = Br; 3: R = H, X = Cl; 4: R =t, X = Cl] with nitroso derivatives ArNO [a: Ar = Ph; b: Ar = o-CH3-C3H4; c: Ar = p-(CH3)2NC6H4] yields paramagnetic complexes formulated as [Nb(η5-C5H4R)(η3-C5H4R)X2(ArNO-N,O) 1a, 1b, 1c, 2a, 3a, 4a and 4c, which have been characterized by ESR and IR spectroscopy.  相似文献   

5.
The compound [RU332- -ampy)(μ3η12-PhC=CHPh)(CO)6(PPh3)2] (1) (ampy = 2-amino-6-methylpyridinate) has been prepared by reaction of [RU3(η-H)(μ32- ampy) (μ,η12-PhC=CHPh)(CO)7(PPh3)] with triphenylphosphine at room temperature. However, the reaction of [RU3(μ-H)(μ3, η2 -ampy)(CO)7(PPh3)2] with diphenylacetylene requires a higher temperature (110°C) and does not give complex 1 but the phenyl derivative [RU332-ampy)(μ,η 12 -PhC=CHPh)(μ,-PPh2)(Ph)(CO)5(PPh3)] (2). The thermolysis of complex 1 (110°C) also gives complex 2 quantitatively. Both 1 and 2 have been characterized by0 X-ray diffraction methods. Complex 1 is a catalyst precursor for the homogeneous hydrogenation of diphenylacetylene to a mixture of cis- and trans -stilbene under mild conditions (80°C, 1 atm. of H2), although progressive deactivation of the catalytic species is observed. The dihydride [RU3(μ-H)232-ampy)(μ,η12- PhC=CHPh)(CO)5(PPh3)2] (3), which has been characterized spectroscopically, is an intermediate in the catalytic hydrogenation reaction.  相似文献   

6.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

7.
Dibenzo[b,e]-7,7,8,8-tetraalkyl-7,8-disilabicyclo[2.2.2]octa-2,5-dienes (1: R = tBuCH2; 2: R = iPr) were prepared by the reaction of ClR2SiSiR2Cl with lithium anthracenide in 1,2-dimethoxyethane (DME) at room temperature. The structure of 1 was determined by X-ray crystallography. Crystal data for 1: monoclinic, rC2/c, A = 12.941(2), B = 14.601(1), C = 35.109(6) Å, β = 94.957(7)°, V = 6609(2) Å3, Z= 8, R = 0.048, Rw = 0.053 for 4037 reflections. Compounds 1 and 2 show the bathochromic shift of 1La and 1Lb bands in UV spectra and exhibit considerably low oxidation potentials due to effective σ-π conjugation. Compounds 1 and 2 form charge-transfer complexes with tetracyanoethylene (TCNE). In the case of 1, the charge-transfer complex (1: TCNE = 2: 1) could be isolated as crystals and the structure was determined by X-ray crystallography. Crystal data for the 1-TCNE complex: monoclinic, C2/c, A= 10.267(2), b = 36.077(4), C = 20.022(4) Å, β = 100.680(8)°, V = 7288(2) Å3, Z = 4, R = 0.045, Rw = 0.077 for 4120 reflections. The action of transition metal chlorides on 2 resulted in [4+2] cycloreversion to form CliPr2SiSiiPr2Cl and anthracene.  相似文献   

8.
4-1,2:3,4-(trans-1,3,5-hexatriene)](η5-cyclopentadienyl)cobalt (3) undergoes dimerization to form a flyover carbene, 5, with concomitant elimination of one equivalent of trans-1,3,5-hexatriene. Structure 5 thermally rearranges via a metal-mediated [1,5]-H shift to carbene 6: Ea = 29.1 ± 0.4 kcal mol−1, log A = 11.6 ± 0.6. The structures of 5 and 6 were confirmed by single crystal X-ray determination. Low temperature irradiation of 6 generates 13 which undergoes a thermally induced reversion to 6: Ea = 19.4 ± 0.9 kcal mol−1, log A = 10.0 ± 1.3. Deuterium labeling studies indicate the mechanisms involved in these C---H transformations are intramolecular, regio-, and stereospecific. The chemical study of this system is extended to include a variety of homologous CpCo(triene) complexes. A comparison between the triene approach to the formation of these flyover pentadienyl carbenes and direct carbene addition is described.  相似文献   

9.
The optically active indenyl complexes ((η5-C9H7)Ru(L---L)Cl (where L---L is either (S,S)-1,2-dimethyl-1,2-ethanediylbis(diphenylphosphine) (chiraphos) or (R,R)-1,2-cyclopentanediylbis(diphenylphosphine) (cypenphos)) have been synthesized and spectroscopically characterized and compared with the corresponding cyclopentadienyl complexes. Reaction of the new complexes with 2-e-donors give cationic adducts in which the pentahaptocoordination of the indenyl ligand is maintained. The crystal structures of (S,S)-(η5-C9H7)Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (1) and (S,S)-η5-C5H5Ru{Ph2PCH(CH3)CH(CH3)PPh2}Cl (3) have been determined.  相似文献   

10.
The η3-allyliridium complexes [Ir(η3-2-RC3H4)(PiPr3)2] (2, 3) have been prepared in a one-pot reaction from [IrCl(C2H4)2]2, 2-RC3H4Li and PiPr3 in 70% yield. Compounds 2 and 3 react spontaneously with H2 to give [IrH5(PiPr3)2] (7) and with excess PhC=CH and MeCCH to give [Ir(CCPh)3(PiPr3)2] (5) and [Ir(CCMe)2(CMe=CH2)(PiPr3)2] (6), respectively. From 2 (or 3) and two equivalents of PhCCH the complex [IrH(CCPh)2(PiPr3)2] (4) has been obtained. Treatment of 2 or 3 with CF3CO2H does not lead to a cleavage of the allyl-metal bond but affords the allyl(hydrido)-iridium(III) complexes [IrH(η3-2-RC3H4)(η1-P2CCF3)(PiPr3)2] (8, 9) in almost quantitative yield.  相似文献   

11.
The first carbonyl molybdenum-(O) and -(II) complexes with phenylbis(2-pyridyl)phosphine (PPhpy2) have been synthesized. PPhpy2 reacts with [Mo(CO)5(NCMe)] to give [Mo(CO)5(PPhpy2-P)]. With [Mo(CO)4(NBD)] (NBD = norbornadiene) it gives [Mo(CO)4(PPhpy2-P)2] when a 2 : 1 ratio is used, or [MO(CO)4(py2PhP---N,N′)] for a 1 : 1 ratio. Decarbonylation of any of these pyridylphosphine complexes leads to an oligomer of formula {MO(CO)3(μ-PPhpy2)}n, which is also obtained after heating [MO(CO)6] in solution with an equimolar amount of PPhpy2. The oligomer undergoes oxidative addition by iodine or allylbromide to give [MoI2(CO)3(py2PhP---N,N′)], or [MoBr(η3-CH2CHCH2)(CO)2(py2PhP---N,N′)], respectively. These complexes are also obtained by addition of equimolar amounts of PPhpy2 to solutions of [MoI2(CO)3(NCMe)2] and MoBr(η3-CH2CH CH2)(CO)2(NCMe)2, respectively. The ligand tends to act as a P-donor towards molybdenum(O) substrates, and as a chelating N,N′-donor in molybdenum (II) complexes.  相似文献   

12.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

13.
A new family of heteropolytungstate complexes (NH4)21[Ln(H2O)5{Ni(H2O)}2As4W40O140xH2O(Ln=Y, Ce, Pr, Nd, Sm, Eu, Gd) were prepared by the reaction of Na27[NaAs4W40O140]·60H2O with NiCl2·6H2O and Ln(NO3)3·xH2O at pH≈4.5. The crystal structures of (NH4)21[Gd(H2O)5{Ni(H2O)}2As4W40O140]·51H2O was determined by X-ray diffraction analysis and element analysis. The compound crystallizes in the monoclinic space group P21/n with a=19.754(3), b=24.298(4), c=39.350(6) Å, β=100.612(3)°, V=18564(5) Å3, Z=2, R1(wR2)=0.0544(0.0691). The central site S1 and two opposite sites S2 of the big cyclic ligand [As4W40O140]28− are occupied by one Ln3+and two Ni2+, respectively, each site supply four Od coordinating to metal ion, another one water molecule and other five water molecules coordinate, respectively, to Ni2+and Ln3+. Polyanion [Ln(H2O)5{Ni(H2O)}2As4W40O140]21− has C2v symmetry. IR and UV–vis spectra of [NaAs4W40O140]27− of the title compounds are discussed.  相似文献   

14.
Polycrystalline octa-nuclear copper(I) O,O′-di-i-propyl- and O,O′-di-i-amyldithiophosphate cluster compounds, {Cu8[S2P(OR)2]68-S)} where R = iPr and iAm, were synthesized and characterized by 31P CP/MAS NMR at 8.46 T and static 65Cu NMR at multiple magnetic field strengths (7.05, 9.4 and 14.1 T). The symmetries of the electronic environments around the P sites were estimated from the 31P chemical shift anisotropy (CSA) parameters, δaniso and η. Analyses of the 65Cu chemical shift and quadrupolar splitting parameters for these compounds are presented with the data being compared to those for the analogous octa-nuclear cluster compounds with R = nBu and iBu. The 65Cu transverse relaxation for the copper sites in {Cu8[S2P(OiPr)2]68-S)} and {Cu8[S2P(OiAm)2]68-S)} was found to be very different, with a relaxation time, T2, of 590 μs (Gaussian) and 90 μs (exponential), respectively. The structures of {Cu4[S2P(OiPr)2]4} and {Cu8[S2P(OiPr)2]68-S)} cluster compounds in the liquid- and the solid-state were studied by Cu K-edge EXAFS. The disulfide, [S2P(OiAm)2]2, was obtained and characterized by 31P{1H} NMR. The interactions of the disulfide and of the potassium O,O′-di-i-amyldithiophosphate salt with the surfaces of synthetic chalcocite (Cu2S) were probed using solid-state 31P NMR spectroscopy and only the presence of copper(I) dithiophosphate species with the {Cu8[S2P(OiAm)2]68-S)} structure was observed.  相似文献   

15.
The title complex (Me2SiSiMe2)(η5-l-indenyl)Fe(CO)]2(μ-CO)2 (1) was prepared by the reaction of 1,2-bis(1-indenyl)tetramethyl-disilane and Fe(CO)5 in refluxing heptane. Its thermal rearrangement product [Me2Si(η5-1-indenyl)Fe(CO)2]2 (2) was also obtained from the reaction. 1 in refluxing xylene can be readily converted into 2. The crystal structures of the cis isomer 1c and the trans isomer 2t were determined by X-ray diffraction.  相似文献   

16.
The chemistry of the di-μ-methylene-bis(pentamethylcyclopentadienyl-rhodium) complexes is reviewed. The complex [{(η5-C5Me5)RhCl2}2] (1a) reacted with MeLi to give, after oxidative work-up, blood-red cis-[{(η5-C5Me5)Rh(μ-CH2)}2(Me)2], 2. This has the two rhodiums in the +4 oxidation state (d5), and linked by a metal-metal bond (2.620 Å). Trans-2 was formed on isomerisation of cis-2 in the presence of Lewis acids, or by direct reaction of 1a with Al2Me6, followed by dehydrogenation with acetone. The Rh-methyls in [{(η5-C5Me5)Rh(μ-CH2)}2(Me)2] were readily replaced under acidic conditions (HX) to give [{(η5-C5Me5)Rh(μ-CH2)}2(X)2] (X = Cl, Br or I); these latter complexes reacted with a variety of RMgX to give [{(η5-C5Me5)Rh(μ-CH2)}2(R)2] (R = alkyl, Ph, vinyl, etc.). Trans-2 also reacted with HBF4 in the presence of L to give first [{(η5-C5Me5)Rh(μ-CH2)}2(Me)(L)]+ and then [{(η5-C5Me5)Rh(μ-CH2)}2(L)2]2+ (L = MeCN, CO, etc.). The {(η5-C5Me5)Rh(μ-CH2)}2 core is rather kinetically inert and also forms a variety of complexes with oxy-ligands, both cis-, e.g. [{(η5-C5Me5)Rh(μ-CH2)}2(μ-OAc)]+ and trans-, such as [(η5-C5Me5)Rh(μ-CH2)}2(H2O)2]2+. The complexes [{(η5-C5Me5)Rh(μ-CH2)}2(R)L]+ (R = Me or aryl) in the presence of CO, or [{(η5-C4Me5)Rh(μ-CH2)}2(R)2] (R = Me, Ph or CO2Me) in the presence of mild oxidants, readily yield the C---C---C coupled products RCH=CH2. The mechanisms of these couplings have been elucidated by detailed labelling studies: they are more complex than expected, but allow direct analogies to be drawn to C---C couplints that occur during Fischer-Tropsch reactions on rhodium surfaces.  相似文献   

17.
Rhodium(I) complexes formed by (−)-(2S,4S)-2,4-bis(diphenylphosphino)pentane (BDPP) are efficient catalysts for the hydrogenation of acetophenone and acetophenonebenzylimine. The composition of the solvent mixture and the reaction temperature have a marked influenced on the enantioselectivity. These effects are thought to be related to the enhanced conformational flexibility of six-membered rings when simple substrates without functional groups are coordinated to the rhodium. X-ray crystallographic studies reveal that in [Rh((S,S)-BDPP)NBD]+ (1) the ligand is in a chair conformation, and that in [Rh((S,S)-BDPP)COD]+ (2) the chelate ring is in a δ-skew conformation. Studies of Rh((S,S)-BDPP)(NBD)Cl (3) in solution indicate a trigonal bipyramidal structure with a chair conformation of the ring in aromatic solvents and a conformationally labile ring in methanol.  相似文献   

18.
Thermolysis of [arachno-4-SB8H12] (1) in boiling cyclohexane gives two isomers 2 and 3 of 18-vertex [S2B16H16], together with known 12-vertex [closo-1-SB11H11] (4) and known 11-vertex [nido-7-SB10H12] (5). Compounds 2 and 3 are characterised by single-crystal X-ray diffraction analyses and single- and double-resonance 11B- and 1H-NMR spectroscopy. The [n-S2B16H16] isomer 2 takes the form of nido ten-vertex: nido ten-vertex [anti-B18H22] with the 9 and 9′ positions occupied by S vertices, whereas the [iso-S2B16H16] isomer 3 takes the form of a nido 11-vertex {SB10} subcluster fused via a common two-boron edge to a nido-type {B8} subcluster that is additionally linked exo to the {SB10} subcluster by a bridging S atom that is held endo to the {B8} unit. Isomer 2 is readily deprotonated and its monoanion 6 is characterised by NMR spectroscopy and by a single-crystal X-ray diffraction analysis of its [tmndH]+[n-S2B16H15] salt 6b; deprotonation has occurred from an open-face B---H---B bridging site.  相似文献   

19.
Acylrhodium(III)-η3-1-ethylallyl complex (7) was prepared by the reaction of 8-quinolinecarboxaldehyde (3) and 1,4-pentadienerhodium(I) chloride (2) by C---H bond activation, followed by hydrometallation, and double bond migration. Higher concentrations of pyridine as coordinating ligand transforms η3-1-ethylallylrhodium(III) complexes (8a,8b) into η1-pent-2-enylrhodium(III) complex (11a). Acylrhodium(III)-η3-syn,anti-1,3-dimethylallyl complex (14) was also prepared from 1,3-pentadienerhodium(I) chloride (16) and 3. The reductive elimination of acylrhodium(III)-η1- and -η3-1-alkylallyl complexes by trimethylphosphite gives various β,γ-unsaturated ketones.  相似文献   

20.
The reaction of [R-(R,R)]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(NCMe)]PF6 with (±)-AsHMePh in boiling methanol yields crystalline [R-[(R)-(R,R)]-(+)589)-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsHMePH)PF6, optically pure, in ca. 90% yield, in a typical second-order asymmetric transformation. This complex contains the first resolved secondary arsine. Deprotonation of the secondary arsine complex with KOBut at −65°C gives the diastereomerically pure tertiary arsenido-iron complex [R-[(R),(R,R)]]-[((η5-C5H5){1,2-C6H4(PMePh)2}FeAsMePh] · thf, from which optically pure [R-[(S),(R,R)]]-(+)589-[(η5-C5H5){1,2-C6H4(PMePh)2}Fe(AsEtMePh)PF6 is obtained by reaction with iodoethane. Cyanide displaces (R)-(−)589-ethylmethylphenylarsine from the iron complex, thereby effecting the asymmetric synthesis of a tertiary arsine, chiral at arsenic, from (±)-methylphenylarsine and an optically active transition metal auxiliary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号