首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two-dimensional liquid chromatography of synthetic polymers   总被引:2,自引:0,他引:2  
Two-dimensional liquid chromatography, 2D-LC of synthetic polymers is critically assessed. Similarities and differences of 2D-LC of low-molecular-mass and polymeric substances are reviewed. The rationale of application of 2D-LC to macromolecular substances is discussed. Basic information on retention mechanisms in liquid chromatography of synthetic polymers is furnished. The principles, reasons, and significance of coupling of retention mechanisms are explained. The resulting separation processes are elucidated, and the technical concepts of the corresponding experimental arrangements are described. The benefits of 2D-LC are demonstrated together with numerous problems and shortcomings of the method.   相似文献   

2.
The photodecomposition of imazamox, a herbicide of the imidazolinone family, was investigated in pure water. The main photoproducts from the photolysis were followed over time by liquid chromatography mass spectrometry and structures were proposed from exact mass determinations obtained by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. The method comprised exact mass determination with better than 0.2 ppm mass accuracy and a corresponding structural visualization taking care of respective isotopes with an adapted van Krevelen diagram that enabled a systematic approach to the characterisation of the elementary composition of each photoproduct. By taking advantage of the high resolving power of FT-ICR MS to make precise formula assignments, the derived 2D van Krevelen diagram (O/C; H/C; m/z) enabled one to structurally differentiate the formed photoproducts and to propose a degradation pathway for imazamox. Figure Overview of applied method to analyse the photolysis process of imazamox herbicide  相似文献   

3.
Inorganic mass spectrometry techniques may offer great potential for the characterisation at the nanoscale, because they provide unique elemental information of great value for a better understanding of processes occurring at nanometre-length dimensions. Two main groups of techniques are reviewed: those allowing direct solid analysis with spatial resolution capabilities, i.e. lateral (imaging) and/or in-depth profile, and those for the analysis of liquids containing colloids. In this context, the present capabilities of widespread elemental mass spectrometry techniques such as laser ablation coupled with inductively coupled plasma mass spectrometry (ICP-MS), glow discharge mass spectrometry and secondary ion/neutral mass spectrometry are described and compared through selected examples from various scientific fields. On the other hand, approaches for the characterisation (i.e. size, composition, presence of impurities, etc.) of colloidal solutions containing nanoparticles by the well-established ICP-MS technique are described. In this latter case, the capabilities derived from the on-line coupling of separation techniques such as field-flow fractionation and liquid chromatography with ICP-MS are also assessed. Finally, appealing trends using ICP-MS for bioassays with biomolecules labelled with nanoparticles are delineated.   相似文献   

4.
The purpose of this study was to optimize chromatographic and detection conditions for the simultaneous determination of water-soluble vitamins in multi-vitamin dietary supplements using a single chromatographic run. An approach using liquid chromatography with diode array and/or mass spectrometry for quantitation of seven B-complex vitamins [thiamine (B1), riboflavin (B2), nicotinamide (B3), pyridoxine (B6) pyridoxine, biotin, pantothenic acid, and folic acid] in multi-vitamin/multi-mineral daily supplements is described. This approach utilizes a reversed phase C18 column (4 μm; i.d.: 250×2.0 mm) with a gradient mobile elution profile, performed at a flow rate of 0.25 ml/min. After a 5-min isocratic elution at 100% A (0.1% formic acid in water), a linear gradient to 50% A and 50% B (0.1% formic acid in acetonitrile) at 15 min and then to 5% A and 95% B at 17 min was employed. Detection was performed with a photodiode array detector (DAD) in sequence with a triple-quad mass spectrometer in the multiple reaction mode (MS-MRM). Although good chromatographic separation of ascorbic acid was also obtained in extracts from multi-vitamin/multi-mineral supplements, the ascorbic acid could not be quantified properly due to rapid oxidation catalyzed by the minerals. This method was initially applied to determine water-soluble vitamins in representative multi-vitamin/multi-mineral tablets following the extraction of ground samples with a phosphate buffer (10 mM, pH 2.5). For multi-vitamin supplement tablets, this approach does not require any sample clean-up/pre-concentration steps except for centrifugation and filtration of the extract.   相似文献   

5.
Particle size and shape and their distribution directly influence a variety of end-use material properties related to packing, mixing, and transport of powders, solutions, and suspensions. Many of the techniques currently employed for particle size characterization have found limited applicability for broadly polydisperse and/or nonspherical particles. Here, we introduce a quadruple-detector hydrodynamic chromatography (HDC) method utilizing static multiangle light scattering (MALS), quasi-elastic light scattering (QELS), differential viscometry (VISC), and differential refractometry (DRI), and apply the technique to characterizing a series of solid and hollow polystyrene latexes with diameters in the approximate range of 40–400 nm. Using HDC/MALS/QELS/VISC/DRI, we were able to determine a multiplicity of size parameters and their polydispersity and to monitor the size of the particles across the elution profile of each sample. Using self-similarity scaling relationships between the molar mass and the various particle radii, we were also able to ascertain the shape of the latexes and the shape constancy as a function of particle size. The particle shape for each latex was confirmed by the dimensionless ratio ρR G,z /R H,z which, in addition, provided information on the structure (compactness) of the latexes as a function of particle size. Solid and hollow polystyrene latex samples were also differentiable using these methods. Extension of this method to nonspherical, fractal objects should be possible.    相似文献   

6.
In the present work we report the results obtained with a methodology based on direct coupling of a headspace generator to a mass spectrometer for the identification of different types of petroleum crudes in polluted soils. With no prior treatment, the samples are subjected to the headspace generation process and the volatiles generated are introduced directly into the mass spectrometer, thereby obtaining a fingerprint of volatiles in the sample analysed. The mass spectrum corresponding to the mass/charge ratios (m/z) contains the information related to the composition of the headspace and is used as the analytical signal for the characterization of the samples. The signals obtained for the different samples were treated by chemometric techniques to obtain the desired information. The main advantage of the proposed methodology is that no prior chromatographic separation and no sample manipulation are required. The method is rapid, simple and, in view of the results, highly promising for the implementation of a new approach for oil spill identification in soils. Figure PCA score plots illustrate clear discrimination of types of crude oil in polluted soil samples (e.g. results are shown for vertisol)  相似文献   

7.
A simple, rapid, sensitive and selective liquid chromatography/electrospray tandem mass spectrometry method was developed and validated for the simultaneous quantification of cilostazol and its primary metabolite 3,4-dehydrocilostazol in human plasma using mosapride as an internal standard. The method involves a simple one-step liquid-liquid extraction with a diethyl ether and dichloromethane mixture (7:3). The analytes were chromatographed using an isocratic mobile phase on a reversed-phase C18 column and analyzed by mass spectrometry in the multiple reaction monitoring mode using the respective [M+H]+ ions, m/z 370/288 for cilostazol, m/z 368/286 for 3,4-dehydrocilostazol and m/z 422/198 for the internal standard. The assay exhibited a linear dynamic range of 5–2,000 ng/mL for cilostazol and 5–400 ng/mL for 3,4-dehydrocilostazol in human plasma. The lower limit of quantitation was 5 ng/mL for both cilostazol and its metabolite. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetics, bioavailability or bioequivalence studies.   相似文献   

8.
Separation and detection of seven V-type (venomous) and G-type (German) organophosphorus nerve agent degradation products by gas chromatography with inductively coupled plasma mass spectrometry (GC–ICPMS) is described. The nonvolatile alkyl phosphonic acid degradation products of interest included ethyl methylphosphonic acid (EMPA, VX acid), isopropyl methylphosphonic acid (IMPA, GB acid), ethyl hydrogen dimethylamidophosphate sodium salt (EDPA, GA acid), isobutyl hydrogen methylphosphonate (IBMPA, RVX acid), as well as pinacolyl methylphosphonic acid (PMPA), methylphosphonic acid (MPA), and cyclohexyl methylphosphonic acid (CMPA, GF acid). N-(tert-Butyldimethylsilyl)-N-methyltrifluroacetamide with 1% TBDMSCl was utilized to form the volatile TBDMS derivatives of the nerve agent degradation products for separation by GC. Exact mass confirmation of the formation of six of the TBDMS derivatives was obtained by GC–time of flight mass spectrometry (TOF-MS). The method developed here allowed for the separation and detection of all seven TBDMS derivatives as well as phosphate in less than ten minutes. Detection limits for the developed method were less than 5 pg with retention times and peak area precisions of less than 0.01 and 6%, respectively. This method was successfully applied to river water and soil matrices. To date this is the first work describing the analysis of chemical warfare agent (CWA) degradation products by GC–ICPMS. Figure Illustrated here are six parent organophosphorus nerve agents corresponding to the degradation products analyzed by gas chromatography with ICPMS and ToF-MS detection. The authors would like to thank Daisy-Malloy Hamburg and Kevin M. Kubachka for creating this figure  相似文献   

9.
The important role that surface chemical analysis methods can and should play in the characterization of nanoparticles is described. The types of information that can be obtained from analysis of nanoparticles using Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), time-of-flight secondary-ion mass spectrometry (TOF-SIMS), low-energy ion scattering (LEIS), and scanning-probe microscopy (SPM), including scanning tunneling microscopy (STM) and atomic force microscopy (AFM), are briefly summarized. Examples describing the characterization of engineered nanoparticles are provided. Specific analysis considerations and issues associated with using surface-analysis methods for the characterization of nanoparticles are discussed and summarized, with the impact that shape instability, environmentally induced changes, deliberate and accidental coating, etc., have on nanoparticle properties.   相似文献   

10.
11.
n-Butyl benzyl phthalate (BBP) is an endocrine-disrupting chemical. A bacterium species capable of using BBP as the sole source of carbon and energy was isolated from mangrove sediment. Effects of BBP concentration, pH, temperature, and salinity on BBP biodegradation were studied. The optimum pH, temperature, and salinity for the BBP biodegradation were 7.0, 37°C, and 15 g L−1, respectively. BBP was completely degraded within 6 days under optimum conditions, and the biodegradation of BBP could be fitted to a first-order kinetic model. The major metabolites of BBP biodegradation were identified as mono-butyl phthalate, mono-benzyl phthalate, phthalic acid, and benzoic acid by using high-performance liquid chromatography and gas chromatography–mass spectrometry. A preliminary metabolic pathway was proposed for the biodegradation of BBP.   相似文献   

12.
Electrodeposition polymers can be precipitated on electrode surfaces upon electrochemical-induced modulations of the pH value in the diffusion zone in front of the electrode. The formed polymer films can be used as immobilization matrices in amperometric biosensors. In order to rationally control the thus obtained biosensor properties, it is indispensable to develop strategies for the reproducible synthesis of electrodeposition polymers as well as methods for the non-manual and reproducible sensor fabrication. Based on instrumental developments such as a specifically designed parallel synthesizer with improved stirring and temperature control, an automatic pipetting robot for the preparation of the monomer mixtures and controlled removal of polymerization inhibitors, the reproducible synthesis of libraries of electrodeposition polymers was achieved. Moreover, the polymerization process could be monitored using in-line thermocouples, and it could be shown that the chosen strategies led to reproducible polymerization reactions. By adaptation of an electrochemical robotic system integrating a Au microtiter plate and automatic electrode cleaning by means of a polishing wheel reproducible biosensor fabrication using glucose oxidase as a model enzyme could be demonstrated. These results open the route for the rational development of biosensors and control of the sensor properties by choosing specifically designed electrodeposition polymers.   相似文献   

13.
In order to study the effect of the nature and the length of the spacer, three mixed 10-undecenoate/phenylcarbamate derivatives of β-cyclodextrin have been prepared and linked to allylsilica gel by means of a radical reaction. The chiral recognition ability of the resulting materials, when used as liquid chromatography chiral stationary phases (CSPs), was evaluated using heptane and either 2-propanol or chloroform as organic mobile-phase modifiers. A large variety of racemic compounds have been separated successfully on these CSPs (mainly pharmaceuticals and herbicides). Optimization of these separations was discussed in terms of mobile-phase composition and structural patterns of the injected analytes. The efficiencies of the three prepared materials were compared to those of previously described perphenylated-β-cyclodextrin column and to analogous cellulose derivative-based CSPs. Schematic illustration of the b-cyclodextrin/mandelic acid inclusion complex  相似文献   

14.
Although colloidal nanoparticles show an electrophoretic heterogeneity under the conditions of capillary electrophoresis, which can be either due to the particle-size distribution and/or the particle shape distribution and/or the zeta-potential distribution, they can form correct isotachophoretic zones with sharp-moving boundaries. Therefore, the technique of isotachophoresis permits to generate plugs in which the co-ions and counter ions of the original colloidal solution are removed and replaced by the buffering counter ions of the leading electrolyte. It is shown that analytical isotachophoresis can be used to measure directly, without calibration, the molar (particle) concentration of dispersed ionic colloids provided that the transference number and the mean effective charge number of the particles (within the isotachophoretic zone) can be determined with adequate accuracy. The method can also be used to measure directly the effective charge number of biomacromolecules or colloidal particles, if solutions with known molar (particle) concentration can be prepared. The validity of the approach was confirmed for a model solution containing a known molar concentration of bovine serum albumin.   相似文献   

15.
Nano- and/or macrostructuring of electrode surfaces has recently emerged as a powerful method of improving the performances of electrochemical devices by enhancing both molecular accessibility and rapid mass transport via diffusion, by increasing the electroactive surface area in comparison to the geometric one, and/or by providing confinement platforms for hosting suitable reagents. This brief overview highlights how template technology offers advantages in terms of designing new types of porous electrodes—mostly based on thin films, and functionalized or not—and discusses their use in analytical chemistry via some recent examples from the literature on electrochemical sensors and biosensors.   相似文献   

16.
Pyochelin is a siderophore and virulence factor common to Burkholderia cepacia and several Pseudomonas strains. It is isolated from bacterial media as a mixture of two epimers, which readily equilibrate in most solvents. Experiments based on high-performance liquid chromatography/electrospray ionization mass spectrometry are reported here, allowing the investigation of the different Fe(III)-chelating properties of pyochelin diastereomers in solution without the need for labourious isolation. It is demonstrated in this study that only one of the two pyochelin diastereomers is able to chelate Fe(III); no Fe(III) complexes of the other diastereomer could be detected. The Fe(III)–pyochelin complex exhibited a 1:1 metal-to-siderophore ratio and no evidence for other stoichiometries was found.   相似文献   

17.
A three-step gradient reversed-phase high-performance liquid chromatography (RP-HPLC) method was developed for the separation of dehydroepiandrosterone (DHEA), its sulfate ester (DHEA-S), its three C7-oxidized metabolites (7αOH-DHEA, 7βOH-DHEA, 7-keto-DHEA), and its biosynthetic congeners (androstenedione, testosterone, estradiol, pregnenolone). This new method allows the quantitative characterization of DHEA metabolism and biosynthetic transformation under given physiological, pathological, or therapeutically influenced circumstances. Tetrahydrofuran probably acts as a proton acceptor coadsorbent, while isopropanol behaves as a proton donor during the separation of testosterone, estradiol, and the stereoisomers of 7-OH-DHEA. Figure Optimized gradient RP-HPLC results in full separation of DHEA from its biosynthetic congeners and metabolites  相似文献   

18.
A three-phase LPME (liquid-phase microextraction) method for the enantioselective analysis of venlafaxine (VF) metabolites (O-desmethylvenlafaxine (ODV) and N-desmethylvenlafaxine (NDV) in microsomal preparations is described for the first time. The assay involves the chiral HPLC separation of drug and metabolites using a Chiralpak AD column under normal-phase mode of elution and detection at 230 nm. The LPME procedure was optimized using multifactorial experiments and the following optimal condition was established: sample agitation at 1,750 rpm, 20 min of extraction, acetic acid 0.1 mol/L as acceptor phase, 1-octanol as organic phase and donor phase pH adjustment to 10.0. Under these conditions, the mean recoveries were 41% and 42% for (−)-(R)-ODV and (+)-(S)-ODV, respectively, and 47% and 48% for (−)-(R)-NDV and (+)-(S)-NDV, respectively. The method presented quantification limits of 200 ng/mL and it was linear over the concentration range of 200–5,000 ng/mL for all analytes. The validated method was employed to study the in vitro biotransformation of VF using rat liver microsomal fraction. The results demonstrated the enantioselective biotransformation of VF.   相似文献   

19.
Oral administration of sodium tungstate is an effective treatment for type 1 and 2 diabetes in animal models; it does not incur significant side effects, and it may constitute an alternative to insulin. However, the mechanism by which tungstate exerts its observed metabolic effects in vivo is still not completely understood. In this work, serum-containing proteins which bind tungstate have been characterized. Size exclusion chromatography (SEC) coupled to inductively coupled plasma mass spectrometry (ICP-MS) with a Phenomenex Bio-Sep-S 2000 column and 20 mM HEPES and 150 mM NaCl at pH 7.4 as the mobile phase was chosen as the most appropriate methodology to screen for tungsten–protein complexes. When human serum was incubated with tungstate, three analytical peaks were observed, one related to tungstate–albumin binding, one to free tungstate, and one to an unknown protein binding (MW higher than 300 kDa). Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometric analysis of the tungsten-containing fractions collected from SEC–ICP-MS chromatograms, after desalting and preconcentration processes, confirmed the association of tungstate with albumin and the other unknown protein. Figure SEC-ICP-MS // MALDI-TOF  相似文献   

20.
Reference materials for the analysis of polybrominated diphenyl ethers, polybrominated biphenyls and other common brominated flame retardants (FR) in styrenic polymers were prepared to suit the demands of actual restriction of the use of certain hazardous substances in electrical and electronic equipment analytics. Three methods of preparation were employed, viz. pellet forming, dissolution/vaporisation and extrusion, whereby extrusion proved to be the most suitable method. For extrusion, three procedures of pre-mixing were investigated: the polymers were either mixed with FR powder, FR solutions or FR concentrates that were taken from waste industrial polymers. The latter procedure proved to be most appropriate in terms of analyte concentration, predictability and recovery. The homogeneity of the samples, as well as the chemical and thermal long-term stabilities, was investigated. The result was an optimised method to prepare a suitable reference material for laboratory use. Figure   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号