首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Medium-resolution spectra of the N2 b1Πu-X1Σg+ band system were recorded by 1 + 1 multiphoton ionization. In the spectra we found different linewidths for transitions to different vibrational levels in the b 1Πu state: Δν0 = 0.50 ± 0.05 cm−1, Δν1 = 0.28 ± 0.02 cm−1, Δν2 = 0.65 ± 0.06 cm−1, Δν3 = 3.2 ± 0.5 cm−1, Δν4 = 0.60 ± 0.07 cm−1, and Δν5 = 0.28 ± 0.02 cm−1. From these linewidths, predissociation lifetimes τν were obtained: τ0 = 16 ± 3 ps, τ1 > 150 ps, τ2 = 10 ± 2 ps, τ3 = 1.6 ± 0.3 ps, τ4 = 9 ± 2 ps, and τ5 > 150 ps. Band origins and rotational constants for the b 1Πuν = 0 and 1 levels were determined for the 14N2 and 14N15N molecules.  相似文献   

2.
The A 2Π-X2+ 0-0 transition of CaF has been examined by the technique of intermodulated fluorescence spectroscopy (“Lamb dip”). The hyperfine structure due to 19F and the spin-rotation fine structure of the X 2+ state was determined. Parameter values of b = 104.0 (9) MHz, c = 58(6) MHz and γ = 38.6(2) MHz were found for v = 0 of X2+  相似文献   

3.
The pure rotational spectrum of MnF has been measured in its X7Σ+ ground state using millimeter/sub-millimeter direct absorption methods. Five and six rotational transitions, respectively, were recorded for this radical in its v=0 and v=1 states in the range 338–630 GHz. MnF was created from SF6 and manganese vapor, produced in a Broida-type oven. The species exhibited a complex pattern where the fine and 55Mn and 19F hyperfine structures are intermixed. Rotational, spin–rotation, spin–spin and hyperfine parameters have been determined for MnF. These constants have been interpreted in terms of bonding and electronic structure in metal fluorides.  相似文献   

4.
The cross section for the quenching of NH(c 1Π, ν = 0) by HN3 was measured by using a pulsed laser technique. A single rotational level of NH(c 1Π, ν = 0) was formed by exciting NH(a 1Δ, ν = 0) with a frequency doubled dye laser. NH(a1Δ) was produced by photolyzing HN3 with a XeCl excimer laser. The time profiles of the NH(c-a) fluorescence were measured at various pressures of HN3. Experiments were performed both in the presence and in the absence of He buffer gas. In the absence of He, the NH radicals were found to be translationally hot; the average velocity was 3800±600 m s−1. The quenching cross sections for the translationally hot and thermalized NH(c) radicals by HN3 were determined to be (28±5) × 10−16 and (85±3) × 10−16 cm2, respectively. No rotational level dependence could be observed in the quenching of the hot NH(c) radicals.  相似文献   

5.
A mixture of NF3 and Ar is passed through an rf discharge in a flow-system to produce, among other species, F and NF2. When H2, D2, or CH4 are added downstream, reactions with F atoms produce vibrationally excited HF or DF together with H, D, or CH3. The latter free radicals can react with NF2, probably by an elimination reaction to produce electronically excited NF: NF2(2B1) + H(D, CH3) → HF*(DF* + NF(a1Δ). A vibrational-to-electronic energy transfer process between the products of this reaction then produces the next higher state of NF: HF(ν 2) + NF(a1Δ) → HF(ν−2) + NF(b1Σ+). A similar transfer process has also been found between the electronically excited a1Δ states of O2 and NF: O2(a1Δ) + NF(a1Δ) → O2(X3Σ) + NF(b1Σ+). The H or D atoms but not the CH3 radicals are then found to react with either NF(a1Δ) or NF(X3Σ) to produce electronically excited N(2D) atoms, which in turn react with the NF(a1Δ) molecules to produce N2(B3Πg). The observed nitrogen first positive radiation has been demonstrated to be produced entirely by this reaction mechanism rather than by the N(4S) recombination that accounts for the Rayleigh afterglow. In addition, the occurrence of the reaction N(2D) + N2O → NO(B2Πr) + N2 (X1Σ+g) has been verified. Finally we have observed emission at 3344 Å, which we attribute to the NF(A3Π), which has not been previously reported.  相似文献   

6.
The A 2Πu-X 2Πg electronic emission spectrum of I2+ has been recorded at a low rotational temperature in a crossed molecular beam/electron beam apparatus. Six vibrational sequences with five or more members have been assigned to progressions in ν′, giving ω′e = 122±8 cm−1, but a full vibrational analysis has not been possible. It is not known whether this is due to the relatively poor resolution (≈5 cm−1) at which the spectrum has been recorded or because the A 2Πu state is perturbed in one or both spin-orbit components. Existing data on the A state of I2+ are reviewed.  相似文献   

7.
Large-scale MRD CI calculations assign to AlP the ground state X 3Σ (9σ22) and a close-lying state 1 3Π (9σ3π3) (Te = 0.08 eV). Up to transition energies of 2.0 eV, other states are described by the configurations 9σ3π3 (11Π), 8σ24 (1 1Σ+), 9σ22 (1 1Δ and 2 1Σ+) and 9σ3π24π (1 5Π). The 2 3Π state, located at ≈ 2.30 eV, shows a shallow double minimum. Numerous perturbations are expected to induce predissociation upon 2 3Π. Multiplets arising from the occupation 8σ234π are clustered in the 3.25–3.50 eV region. Quintet states with the configuration 8σ9σ3π34π are bound, with Te values (in eV) of 3.80 (1 5Σ+), 4.44 (1 5Δ) and 4.88 (3 5Σ), respectively. The 9σ → 4s Rydberg members 5Σ and 3Σ lie in the 4.58–4.72 eV energy region. The first ionization potential (ionization to X4Σ of AlP+, 9σ → ∞) is estimated to be 7.65 eV. Ionization to the 1 2Σ and 1 2Π states of AlP+ is suggested to occur between 8.0 and 8.8 eV. The dipole moments of X 3Σ, 1 1Δ and 2 1Σ+ are close to 1.0 D, whereas the 1 1Σ+ state has μ = 3.49 D; 1 3Π and 1 1Π have dipole moments from 2.45 to 2.91 D. All low-lying states show a polarity Al+P. Finally, the electronic structure and transition energies of AlP are compared with those of the isoelectronic species BN, AIN, and SiP+.  相似文献   

8.
The radiative lifetimes of the b1Σ+ and a1Δ states have been evaluated by perturbation expansions including X3Σ, a1Δ, b1Σ+, 13,1Π, 23,1Π, 23Σ and 21Σ+ states. All wavefunctions result from large MRD CI calculations. The b—X transition is dominated by the parallel transition moment; it is found to be much stronger than the a—X transition. The calculated radiative lifetimes of τ(1Σ+)=18 ms, τ(1Δ)=2.2 s for NF and τ(1Σ+)=2.5–3.5 ms for NCl are in good accord with corresponding experimentally deduced values. The lifetime for the a1Δ state in NCl is found to be τ(1Δ)=1.1 s, ie. much longer than derived from a recent experiment. Its magnitude is consistent with the τ(b1Σ+)/τ(a1Δ) ratio of similar systems and with the decrease in lifetime from NF to NCl and is thus believed to be quite reliable. A detailed analysis of all contributions of the perturber states to the transition mechanism is made and comparison with the related data in SO, O2 and S2 is undertaken. The b-a transition probability dominated by the quadrupole transition is fairly constant in all the systems in the order of A = 0.013 (NF) - 0.0013 (S2) s−1.  相似文献   

9.
Far infrared laser magnetic resonance (FIR LMR) spectrum of OD (2Π3/2, v=0) has been observed. Data are presented for the Zeeman components of the rotational transition J=3.5→4.5 observed at 118.6 μm using a discharge water vapour laser spectrometer. Theoretical values of the transition magnetic field strengths have been calculated using the best available molecular constants. The agreement between theory and experiment confirms the spectroscopic assignments.  相似文献   

10.
J.R. Flores   《Chemical physics》2005,310(1-3):303-310
Ab initio methods have been used to study the lowest-lying electronic states of the SiCN radical, which has two stable linear isomers in its electronic ground state, SiCN and SiNC. Vertical excitation energies and oscillator strengths have been computed for a number of states lying up to 8 eV. The geometries of the lowest-lying doublet and quartet states have been determined. The lowest-lying excited doublet state of SiNC (12Σ+, 4.0 eV) arises from a HOMO–LUMO excitation (3π → 10σ), although the 12Δ state (9σ → 3π) is very close in energy. In the case of the SiCN isomer the lowest excited state is 12Δ, which arises from an excitation from the highest occupied σ orbital into the HOMO (9σ → 3π) and lies 3.6 eV above the ground state. SiCN should present very strong absorptions at 4.9 and 6.1 eV whereas SiNC should have relatively strong absorptions in the region of 5.7–5.9 eV. The smallest adiabatic energy gaps with respect to the ground state of SiNC and SiCN are very close (about 2.8 eV) and the excited state is the same 12A′, which has angular equilibrium geometries for both isomers. We have determined accurate values for enthalpies of formation of the two linear doublet forms and .  相似文献   

11.
Twenty-two isomers/conformers of C3H6S+√ radical cations have been identified and their heats of formation (ΔHf) at 0 and 298 K have been calculated using the Gaussian-3 (G3) method. Seven of these isomers are known and their ΔHf data are available in the literature for comparison. The least energy isomer is found to be the thioacetone radical cation (4+) with C2v symmetry. In contrast, the least energy C3H6O+√ isomer is the 1-propen-2-ol radical cation. The G3 ΔHf298 of 4+ is calculated to be 859.4 kJ mol−1, ca. 38 kJ mol−1 higher than the literature value, ≤821 kJ mol−1. For allyl mercaptan radical cation (7+), the G3 ΔHf298 is calculated to be 927.8 kJ mol−1, also not in good agreement with the experimental estimate, 956 kJ mol−1. Upon examining the experimental data and carrying out further calculations, it is shown that the G3 ΔHf298 values for 4+ and 7+ should be more reliable than the compiled values. For the five remaining cations with available experimental thermal data, the agreement between the experimental and G3 results ranges from fair to excellent.

Cation CH3CHSCH2+√ (10+) has the least energy among the eleven distonic radical cations identified. Their ΔHf298 values range from 918 to 1151 kJ mol−1. Nevertheless, only one of them, CH2=SCH2CH2+√ (12+), has been observed. Its G3 ΔHf298 value is 980.9 kJ mol−1, in fair agreement with the experimental result, 990 kJ mol−1.

A couple of reactions involving C3H6S+√ isomers CH2=SCH2CH2+√ (12+) and trimethylene sulfide radical cation (13+) have also been studied with the G3 method and the results are consistent with experimental findings.  相似文献   


12.
The recombination of nitrogen atoms on polycrystalline samples of cobalt and nickel produces metastable electronically excited nitrogen molecules, probably N2(W3Δu), which are collisionally transferred to the N2(B3Πg) state. Information about vibrational relaxation of the metastable state by N2(X1Σ+g) is inferred from composition dependent changes in the observed first positive emission spectrum [N29A3Σ+g)−N2(B3Πg] with the aid of multilevel, steady-state, kinetic model.  相似文献   

13.
The fraction FΣ of excited-state oxygen formed as b 1Σg+ was determined for a series of triplet-state photosensitizers in CCl4 solutions. FΣ was determined by monitoring the intensities of (a) O2(b 1Σg+) fluorescence at 1926 nm (O2(b 1Σg+)→O2(a 1Δg) and (b) O2(a 1 Δg) phosphorescence at 1270 nm (O2(a 1Δg) → O2(X3Σg)). Oxygen excited states were formed by energy transfer from substituted benzophenones and acetophenones. The data indicate that FΣ depends on several variables including the orbital configuration of the lowest triplet state and the triplet-state energy. The available data indicate that the sensitizer-oxygen charge transfer (CT) state is not likely to influence FΣ strongly by CT-mediated mixing of various sensitizer-oxygen states.  相似文献   

14.
A Doppler-based velocity selection technique has been used to measure the relative velocity dependence of the cross sections σji,Δr) for rotationally inelastic collisions from level ji to ji + Δν1 = 8,22,42) in 7Li*2 A 1Σ+u)—Xe. The σjν±2r) are strongly attenuated at a smaller νr by “torque averaging” due to molecular rotation; in contrast, for large |Δ|, σj = νrn (1 n 2). An empirical intermolecular potential which reproduces these types of behavior for 3-D classical trajectories is exhibited.  相似文献   

15.
16.
The low lying electronic states of the molecule MoN were investigated by performing all electron ab initio multi-configuration self-consistent-field (CASSCF) calculations. The relativistic corrections for the one electron Darwin contact term and the relativistic mass-velocity correction were determined in perturbation calculations. The electronic ground state is confirmed as being 4. The chemical bond of MoN has a triple bond character because of the approximately fully occupied delocalized bonding π and σ orbitals. The spectroscopic constants for the ground state and ten excited states were derived. The excited doublet states 2, 2Γ, 2Δ, and 2+ are found to be lower lying than the 4Π state that was investigated experimentally. Elaborate multi-configuration configuration-interaction (MRCI) calculations were carried out for the states 4 and 4∏ using various basis sets. The spectroscopic constants for the 4 ground state were determined as re=1.636 Å and ωe=1109 cm−1, and for the 4∏ state as re=1.662 Å and ωe=941 cm−1. The values for the ground state are in excellent agreement with available experimental data. The MoN molecule is polar with a charge transfer from Mo to N. The dipole moment was determined as 2.11 D in the 4 state and as 4.60 D in the 4∏ state. These values agree well with the revised experimental values determined from molecular Stark spectroscopic measurements. The dissociation energy, De, is determined as 5.17 eV, and D0 as 5.10 eV.  相似文献   

17.
The electronic dipole transition moment functions of the A 2Π-X 2Σ+, B 2Σ+-X 2Σ+ and B 2Σ+-A 2Π transitions and the dipole moment function of the X 2Σ+ state of CO+ have been calculated using large contracted CI wavefunctions. The computed transition moment functions together with experimental potential energy curves were used to obtain radiative lifetimes of the excited electronic states B 2Σ+ and A 2Π. Radiative lifetimes of vibrational levels of the X 2Σ+ state were derived from the calculated dipole moment function. The high-frequency deflection technique was used to obtain radiative lifetimes of the ν′ = 0, 1,2 and 3 vibrational levels of the B 2Σ+ state and also radiative lifetimes of individual rotational levels of ν′ =0. The calculated radiative lifetimes are shorter than the measured ones by about 10%. The experimental ν′ dependence is reproduced by theoretical calculation. The calculated radiative lifetimes for the A 2Π state are in excellent agreement with lifetimes measured with an ion trap technique.  相似文献   

18.
The pure rotational spectrum of FeCN has been recorded in the frequency range 140-500 GHz using millimeter/sub-millimeter direct absorption techniques. The species was created in an ac discharge of Fe(CO)(5) and cyanogen. Spectra of the (13)C, (54)Fe, and (57)Fe isotopologues were also measured, confirming the linear cyanide structure of this free radical. Lines originating from several Renner-Teller components in the ν(2) bending mode were also observed. Based on the observed spin-orbit pattern, the ground state of FeCN is (4)Δ(i), with small lambda-doubling splittings apparent in the Ω = 5/2, 3/2, and 1/2 components. In addition, a much weaker spectrum of the lowest spin-orbit component of FeNC, Ω = 9/2, was recorded; these data are consistent with the rotational parameters of previous optical studies. The data for FeCN were fit with a Hund's case (a) Hamiltonian and rotational, spin-orbit, spin-spin, and lambda-doubling parameters were determined. Rotational constants were also established from a case (c) analysis for the other isotopologues, excited vibronic states, and for FeNC. The r(0) bond lengths of FeCN were determined to be r(Fe-C) = 1.924 ? and r(C-N) = 1.157 ?, in agreement with theoretical predictions for the (4)Δ(i) state. These measurements indicate that FeCN is the lower energy isomer and is more stable than FeNC by ~1.9 kcal/mol.  相似文献   

19.
The ZFS parameters D of 2,4-, 2,5- and 3,4-dimethylbenzaldehyde-1h1 and -1d1 guests in perhydrogenated and perdeuterated durene single crystals are determined by comparing the experimental and calculated resonance curves. It is found that the deuterium substitution of the guest aldehydic group in a given host leads to the decrease of the D values and to the increase of the energy gaps ΔET between the zero-point levels of the 3nπ* and 3ππ* states of the guests. On the other hand, the perdeuteration of the host results in the decrease of ΔET with a corresponding increase of the D value of a given guest. The D value of 1 cm−1 determined for 2,5-dimethylbenzaldehyde-1h1 in perdeuterated durene is the lategest ever found for an aromatic carbonyl compound. Correlations between D and ΔET indicate that the ZFS parameters D of the guests are determined by contributions from both spin-spin and spin-orbit interactions between the 3nπ* and 3ππ* states. The large guest and host deuterium effects observed on the D values are attributed to the changes of the gaps ΔET of the guests.  相似文献   

20.
The J = 2 ← 1, 3 ← 2, and 4 ← 3 transitions in the three fine structure components of the X3Σ state of SeO have been measured in a millimeterwave absorption spectrometer. Transitions from the six naturally occurring Se isotopes and in excited vibrational states up to υ = 4 have been observed and have allowed the determination of the isotopic mass and vibrational dependences of the spectroscopic constants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号