首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The synthesis of a range of alkyl/chloro-gallium alkoxide and amido/alkoxide compounds was achieved via a series of protonolysis and alcoholysis steps. The initial reaction involved the synthesis of [Me(Cl)Ga{N(SiMe(3))(2)}](2) (1) via methyl group transfer from the reaction of GaCl(3) with two equivalents of LiN(SiMe(3))(2). Reaction of 1 with varying amounts of ROH resulted in the formation of [Me(Cl)Ga(OR)](2) (2, R = CH(2)CH(2)OMe; 3, CH(CH(3))CH(2)NMe(2)), [Me(Cl)Ga{N(SiMe(3))(2)}(μ(2)-OR)Ga(Cl)Me] (4, R = CH(2)CH(2)NMe(2)), or [MeGa(OR)(2)] (5, R = CH(CH(3))CH(2)NMe(2)). Compound 4 represents an intermediate in the formation of dimeric complexes, of the type [Me(Cl)Ga(OR)](2), when formed from compound [Me(Cl)Ga{N(SiMe(3))(2)}](2). A methylgallium amido/alkoxide complex [MeGa{N(SiMe(3))(2)}(OCH(2)CH(2)OMe)](2) (6) was isolated when 2 was further reacted with LiN(SiMe(3))(2). In addition, reaction of 2 with HO(t)Bu resulted in a simple alcohol/alkoxide exchange and formation of [Me(Cl)Ga(O(t)Bu)](2) (7). In contrast to the formation of 1, the in situ reaction of GaCl(3) with one equivalent of LiN(SiMe(3))(2) yielded [Cl(2)Ga{N(SiMe(3))(2)}](2) in low yield, where no methyl group transfer has occurred. Reaction of alcohol with [Cl(2)Ga{N(SiMe(3))(2)}](2) was then found to yield [Cl(2)Ga(OR)](2) (8, R = CH(2)CH(2)NMe(2)), and further reaction of 8 with LiN(SiMe(3))(2) yielded the gallium amido alkoxide complex, [ClGa{N(SiMe(3))(2)}(OR)](2) (9, R = CH(2)CH(2)NMe(2)), similar to 6. The structures of compounds 4, 5, 7, and 8 have been determined by single-crystal X-ray diffraction.  相似文献   

3.
Three rare compounds have been synthesized and structurally characterized; these species have paddlewheel structures and Re(2)(7+) cores surrounded by four bicyclic guanidinates and two axial ligands along the Re-Re axis. Each possesses a formal bond order of 3.5 and a σ(2)π(4)δ(1) electronic configuration that entails the presence of one unpaired electron for each compound. The guanidinate ligands characterized by having CH(2) entities and a central C(N)(3) unit that joins two cyclic units--one having two fused 6-membered rings (hpp) and the other having a 5- and a 6-membered ring fused together (tbn)--allowed the isolation of [Re(2)(tbn)(4)Cl(2)]PF(6), 1, [Re(2)(tbn)(4)Cl(2)]Cl, 2, and [Re(2)(hpp)(4)(O(3)SCF(3))(2)](O(3)SCF(3)), 3. Because of the larger bite angle of the tbn relative to the hpp ligand, the Re-Re bond distances in 1 and 2 (2.2691(14) and 2.2589(14) ?, respectively) are much longer than that in 3 (2.1804(8) ?). Importantly, electron paramagnetic resonance (EPR) studies at both X-band (~9.4 GHz) and W-band (112 GHz) in the solid and in frozen solution show unusually low g-values (~1.75) and the absence of zero-field splitting, providing direct evidence for the presence of one metal-based unpaired electron for both 1 and 3. These spectroscopic data suggest that the unsymmetrical 5-/6-membered ligand leads to the formation of isomers, as shown by significantly broader EPR signals for 1 than for 3, even though both compounds possess what appears to be similar ideal crystallographic axial symmetry on the X-ray time scale.  相似文献   

4.
The reactions of the heteroleptic lithium amide [Li(3)(μ-hmds)(2)(μ,μ-hpp)] (1), where [hmds](-) = hexamethyldisilazide and [hpp](-) = hexahydropyrimidopyrimidide, with MnCl(2), CoCl(2) or ZnBr(2) result in the formation of the separated ion-pairs [MLi(7)(μ(8)-O)(μ,μ-hpp)(6)](+)[A](-), which each consist of a {MLi(7)} oxo-centred cube structural motif (M = Mn 2, Co 4, Zn 5), with each face of the cube being bridged by an [hpp](-) ligand. In the case of M = Mn and Co, the counter ion, [A](-), is the pentagonal anionic inverse crown [{Li(μ-hmds)}(5)(μ(5)-Cl)](-) (3), whereas the reaction with M = Zn produces the known tris-amido zincate [Zn(hmds)(3)](-) counter anion.  相似文献   

5.
The methylene-linked bis{guanidine}, H(2)C{hpp}(2) (hppH = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine), displays nucleophilic activity towards organic halides, including the activation of dichloromethane under ambient conditions affording the cyclic dication, [H(2)C{hpp}(2)CH(2)](2+)[Cl](2).  相似文献   

6.
The solvothermal reactions between pyrimidinedisulfide (pym(2)S(2)) and CuI or CuBr(2) in CH(2)Cl(2):CH(3)CN lead to the formation of [Cu(11)I(7)(pymS)(4)](n) (pymSH = pyrimidine-2(1H)-thione) (1) and the dimer [Cu(II)(μ-Br)(Br)L](2) (L = 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde) (2). In the later reaction, there is an in situ S-S, S-C(sp(2)), and C(sp(2))-N multiple bond cleavage of the pyrimidinedisulfide resulting in the formation of 2-(pyrimidin-2-ylamino)-1,3-thiazole-4-carbaldehyde. Interestingly, similar reactions carried out just with a change in the solvent (H(2)O:CH(3)CN instead of CH(2)Cl(2):CH(3)CN) give rise to the formation of coordination polymers with rather different architectures. Thus, the reaction between pym(2)S(2) and CuI leads to the formation of [Cu(3)I(pymS)(2)](n) (3) and [CuI(pym(2)S(3))] (pym(2)S(3) = pyrimidiltrisulfide) (4), while [Cu(3)Br(pymS)(2)](n) (5) is isolated in the reaction with CuBr(2). Finally, the solvothermal reactions between CuI and pyrimidine-2-thione (pymSH) in CH(2)Cl(2):CH(3)CN at different ratios, 1:1 or 2:1, give the polymers [Cu(2)I(2)(pymSH)(2)](n) (6) and [Cu(2)I(2)(pymSH)](n) (7), respectively. The structure of the new compounds has been determined by X-ray diffraction. The studies of the physical properties of the novel coordination polymers reveal that compounds 3 and 5 present excellent electrical conductivity values at room temperature, while compounds 1, 3, and 5-7 show luminescent strong red emission at room temperature.  相似文献   

7.
Tripodal ligands N(CH2Py)3-n(CH2Py-6-NHR)n(R=H, n=1-3 L1-3, n=0 tpa; R=CH2tBu, n=1-3 L'1-3) are used to investigate the effect of different hydrogen bonding microenvironments on structural features of their LZnX complexes (X=Cl-, NO3-, OH-). The X-ray structures of [(L2)Zn(Cl)](BPh4)2.0.5(H2O.CH3CN), [(L3)Zn(Cl)](BPh4)3.CH3CN, [(L'1)Zn(Cl)](BPh4) 1', [(L'2)Zn(Cl)](BPh4)2'.CH3OH, and [(L'3)Zn(Cl)](BPh4)3' have been determined and exhibit trigonal bipyramidal geometries with intramolecular (internal) N-HCl-Zn hydrogen bonds. The structure of [(L'2)Zn(ONO2)]NO3 4'.H2O with two internal N-HO-Zn hydrogen bonds has also been determined. The axial Zn-Cl distance lengthens from 2.275 A in [(tpa)Zn(Cl)](BPh4) to 2.280-2.347 A in 1-3, 1'-3'. Notably, the average Zn-N(py) distance is also progressively lengthened from 2.069 A in [(tpa)Zn(Cl)](BPh4) to 2.159 and 2.182 A in the triply hydrogen bonding cavity of 3 and 3', respectively. Lengthening of the Zn-Cl and Zn-N(py) bonds is accompanied by a progressive shortening of the trans Zn-N bond from 2.271 A in [(tpa)Zn(Cl)](BPh4) to 2.115 A in 3 (2.113 A in 3'). As a result of the triply hydrogen bonding microenvironment the Zn-Cl and Zn-N(py) distances of 3 are at the upper end of the range observed for axial Zn-Cl bonds, whereas the axial Zn-N distance is one of shortest among N4 ligands that induce a trigonal bipyramidal geometry. Despite the rigidity of these tripodal ligands, the geometry of the intramolecular RN-HX-Zn hydrogen bonds (X=Cl-, OH-, NO3-) is strongly dependent on the nature of X, however, on average, similar for R=H, CH2tBu.  相似文献   

8.
Straightforward access to hydridoborate-based ionic liquids (BILs) is provided. They fall into a barely developed area of research and are of interest as, for example, reagents for organic synthesis. A series of pure [BH(4)](-) ILs with 1-butyl-2,3-dimethylimidazolium (BMMIM), 1-ethyl-3-methylimidazolium (EMMIM), 1-propyl-1-methylpiperidinium (PropMPip), and1-butyl-1-methylpyrrolidinium (BMP) cations were prepared. All synthesized ILs are well soluble in CH(2)Cl(2). We developed a procedure that gives clean products with correct elemental analyses. In contrast to earlier reports, which when conducted by us yielded only mixtures of the boranate anion with major halide contamination (maximum [BH(4)](-) content: 77.5?%). These materials can be viewed as the starting material for the (hypothetical) hydrogen-storage redox shuttling sequence between [BH(4)](-) and [B(12)H(12)](2-), in which the triboranate anion [B(3)H(8)](-) is a formal intermediate. Here we also developed a facile route to [B(3)H(8)](-) ILs with [BMMIM](+), [EMMIM](+), [PropMPip](+), and [NBu(4)](+), in which Na[BH(4)] reacts in situ (enhanced by ultrasound) with the solvent CH(2)Cl(2) as the oxidizing agent to give the triboranate IL in high yield and purity according to the equation: 3?[BH(4)](-)+2?CH(2)Cl(2)+[Cat](+)→[B(3)H(8)](-)[Cat](+)+H(2)+2?CH(3)Cl+2?Cl(-). We further investigated this reaction path by additional NMR spectroscopic experiments, powder-XRD analysis, and quantum chemical DFT calculations.  相似文献   

9.
The slow addition of NO to a CCl(4) solution of VCl(4) reproducibly forms the known polymer [V(NO)(3)Cl(2)](n)() as a dark brown powder. Treatment of a CH(2)Cl(2) suspension of [V(NO)(3)Cl(2)](n)() with excess THF generates mer-(THF)(3)V(NO)Cl(2) (1) which can be isolated as an orange crystalline material in 55% yield. The reaction of 1 with excess MeCN or 1 equiv of trimpsi (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) provides yellow-orange (MeCN)(3)V(NO)Cl(2)xMeCN (2xMeCN) and yellow (trimpsi)V(NO)Cl(2) (3), respectively. A black, crystalline complex formulated as [NO][VCl(5)] (4) is formed by the slow addition of NO to neat VCl(4) or by the reaction of excess ClNO with neat VCl(4). Complex 4 is extremely air- and moisture-sensitive, and IR spectroscopy suggests that in solutions and in the gas phase it dissociates back into VCl(4) and ClNO. Reaction of 4 with excess [NEt(3)(CH(2)Ph)]Cl generates [NEt(3)(CH(2)Ph)](2)[VCl(6)]x2CH(2)Cl(2) (5x2CH(2)Cl(2)), which can be isolated as deep-red crystals in 51% yield. All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 1, 2xMeCN, and 5x2CH(2)Cl(2) have been established by single-crystal X-ray diffraction analyses.  相似文献   

10.
New Pt complexes of chelating bisguanidines and guanidinate ligands were synthesized and characterized. 1,2-Bis(N,N,N',N'-tetramethylguanidino)benzene (btmgb) was used as a neutral chelating bisguanidine ligand, and 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate (hpp(-)) as a guanidinate ligand. The salts [btmgbH](+)[HOB(C(6)F(5))(3)](-) and [btmgbH(2)]Cl(2) and the complexes [(btmgb)PtCl(2)], [(btmgb)PtCl(dmso)](+)[PtCl(3)(dmso)](-), and [(btmgb)PtCl(dmso)](+)[Cl(-)] were synthesized and characterized. In the [btmgbH](+) cation the proton is bound to only one N atom. In the other complexes, both imine N atoms are coordinated to the Pt(II), thus adopting a eta(2)-coordinational mode. The hpp(-) anion, which usually prefers a bridging binding mode in dinuclear complexes, is eta(2)-coordinated in the Pt(IV) complex [(eta(2)-hpp)(hppH)PtCl(2){N(H)C(O)CH(3)}], which is formed (in low yield) by reaction between cis-[(hppH)(2)PtCl(2)] and H(2)O(2) in CH(3)CN.  相似文献   

11.
The binding of group 12 metal ions to bis(2-methylpyridyl) sulfide (1) was investigated by X-ray crystallography and NMR. Seven structures of the chloride and perchlorate salts of Hg(II), Cd(II), and Zn(II) with 1 are reported. Hg(1)(2)(ClO(4))(2), Cd(1)(2)(ClO(4))(2), and Zn(1)(2)(ClO(4))(2).CH(3)CN form mononuclear, six-coordinate species in the solid state with 1 binding in a tridentate coordination mode. Hg(1)(2)(ClO(4))(2) has a distorted trigonal prismatic coordination geometry while Cd(1)(2)(ClO(4))(2) and Zn(1)(2)(ClO(4))(2).CH(3)CN have distorted octahedral geometries. With chloride anions, the 1:1 metal to ligand complexes Hg(1)Cl(2), [Cd(1)Cl(2)](2), and Zn(1)Cl(2) are formed. A bidentate binding mode that lacks thioether coordination is observed for 1 in the four-coordinate, distorted tetrahedral complexes Zn(1)Cl(2) and Hg(1)Cl(2). [Cd(1)Cl(2)](2) is dimeric with a distorted octahedral coordination geometry and a tridentate 1. Hg(1)Cl(2) is comprised of pairs of loosely associated monomers and Zn(1)Cl(2) is monomeric. In addition, Hg(2)(1)Cl(4) is formed with alternating chloride and thioether bridges. The distorted square pyramidal Hg(II) centers result in a supramolecular zigzagging chain in the solid state. The solution (1)H NMR spectra of [Hg(1)(2)](2+) and [Hg(1)(NCCH(3))(x)()](2+) reveal (3)(-)(5)J((199)Hg(1)H) due to slow ligand exchange found in these thioether complexes. Implications for use of Hg(II) as a metallobioprobe are discussed.  相似文献   

12.
Analogues of the ligand 2,2'-(2-hydroxy-5-methyl-1,3-phenylene)bis(methylene)bis((pyridin-2-ylmethyl)azanediyl)diethanol (CH(3)H(3)L1) are described. Complexation of these analogues, 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (CH(3)HL2), 4-bromo-2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (BrHL2), 2,6-bis(((2-methoxyethyl)(pyridin-2-ylmethyl)amino)methyl)-4-nitrophenol (NO(2)HL2) and 4-methyl-2,6-bis(((2-phenoxyethyl)(pyridin-2-ylmethyl)amino)methyl)phenol (CH(3)HL3) with zinc(II) acetate afforded [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), [Zn(2)(BrL2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(CH(3)L3)(CH(3)COO)(2)](PF(6)), in addition to [Zn(4)(CH(3)L2)(2)(NO(2)C(6)H(5)OPO(3))(2)(H(2)O)(2)](PF(6))(2) and [Zn(4)(BrL2)(2)(PO(3)F)(2)(H(2)O)(2)](PF(6))(2). The complexes were characterized using (1)H and (13)C NMR spectroscopy, mass spectrometry, microanalysis, and X-ray crystallography. The complexes contain either a coordinated methyl- (L2 ligands) or phenyl- (L3 ligand) ether, replacing the potentially nucleophilic coordinated alcohol in the previously reported complex [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)). Functional studies of the zinc complexes with the substrate bis(2,4-dinitrophenyl) phosphate (BDNPP) showed them to be competent catalysts with, for example, [Zn(2)(CH(3)L2)](+), k(cat) = 5.70 ± 0.04 × 10(-3) s(-1) (K(m) = 20.8 ± 5.0 mM) and [Zn(2)(CH(3)L3)](+), k(cat) = 3.60 ± 0.04 × 10(-3) s(-1) (K(m) = 18.9 ± 3.5 mM). Catalytically relevant pK(a)s of 6.7 and 7.7 were observed for the zinc(II) complexes of CH(3)L2(-) and CH(3)L3(-), respectively. Electron donating para-substituents enhance the rate of hydrolysis of BDNPP such that k(cat)p-CH(3) > p-Br > p-NO(2). Use of a solvent mixture containing H(2)O(18)/H(2)O(16) in the reaction with BDNPP showed that for [Zn(2)(CH(3)L2)(CH(3)COO)(2)](PF(6)) and [Zn(2)(NO(2)L2)(CH(3)COO)(2)](PF(6)), as well as [Zn(2)(CH(3)HL1)(CH(3)COO)(H(2)O)](PF(6)), the (18)O label was incorporated in the product of the hydrolysis suggesting that the nucleophile involved in the hydrolysis reaction was a Zn-OH moiety. The results are discussed with respect to the potential nucleophilic species (coordinated deprotonated alcohol versus coordinated hydroxide).  相似文献   

13.
We have discovered a series of novel pentacarbonylchromium derivatives of bismuth from the reactions of NaBiO(3) with [Cr(CO)(6)] in KOH/MeOH solutions. When the reaction was carried out at room temperature, the highly charged [Bi[Cr(CO)(5)](4)](3-) (1) was obtained, whose structure was shown by X-ray analysis to possess a central bismuth atom tetrahedrally coordinated to four [Cr(CO)(5)] groups. As the reaction was heated at 80 degrees C, the methyl-substituted complex [MeBi[Cr(CO)(5)](3)](2-)(2) was obtained, presumably via the CbondO activation of MeOH. Further reactions of 1 with CH(2)Cl(2) or CHtbondCCH(2)Br form the halo-substituted complexes [XBi[Cr(CO)(5)](3)](2-)(X=Cl, 3; Br, 4), respectively. On the other hand, the reactions of 1 with RI (R=Me, Et) led to the formation of the alkyl-substituted complexes [RBi[Cr(CO)(5)](3)](2-)(R=Me, 2; Et). The formation of complexes 1-4 is discussed, presumably via the intermediate bismuthinidene [Bi[Cr(CO)(5)](3)](-) or the trianion [Bi[Cr(CO)(5)](3)](3-).  相似文献   

14.
The coordination chemistry of bis[2-(3,5-dimethyl-1-pyrazolyl)ethyl]amine (1, LH) with aluminum- and zinc-alkyls has been studied. Reaction of 1 with AlR3 affords the adducts [LH] x AlR3 (R = Me, 2; Et, 3), which undergo alkane elimination upon heating to yield the amido complexes [L]AlR2 (R = Me, 4; Et, 5). Reaction of LiO(iPrO)C=CMe2 with 2 proceeds via N-H deprotonation to give Li[L]AlMe3 (6), while the former enolate adds to 4 to generate [Me2C=C(OiPr)OLi] x [L]AlMe2 (7). Similarly, the 1:1 reaction of ZnEt2 with 1 gives [LH] x ZnEt2 (9), which is transformed into [L]ZnEt (10) upon heating. When an excess of ZnEt2 was used in the latter reaction, the bimetallic complex [L]ZnEt x ZnEt2 (11) was isolated beside 10. Performing the same reaction in the presence of O2 traces yielded selectively the dinuclear ethyl-ethoxide complex [L]Zn2Et2(mu-OEt) (12), which was alternatively prepared from the reaction of 10 and ZnEt(OEt). Zinc chloride complexes [LH] x ZnRCl (R = Et, 13; p-CH3C6H4CH2, 14) and [L]ZnCl (15) were prepared in high yields following similar strategies. Ethyl abstraction from 10 with B(C6F5)3 yields [L]Zn+EtB(C6F5)3- (16). All complexes have been characterized by multinuclear nuclear magnetic resonance (NMR), elemental analysis, and single-crystal X-ray diffraction studies for four-coordinate Al complexes 2, 4, and 6 and Zn complexes 9-12 and 14. Aluminate species 6 and 7 initiate the polymerization of methyl methacrylate, and the monomer conversions are improved in the presence of neutral complexes 2 or 4, respectively; however, these methyl methacrylate (MMA) polymerizations are uncontrolled. Polymerization of rac-lactide takes place at 20 degrees C in the presence of zinc ethoxide complex 12 to yield atactic polymers with controlled molecular masses and relatively narrow polydispersities.  相似文献   

15.
A series of zinc silylamido complexes bearing claw-type multidentate aminophenolate ligands, [LZnN(SiMe(3))(2)] (L = -OAr(1)-CH(2)N[(CH(2))(n)NR(2)]CH(2)Ar(2), n = 2 or 3; R = Me or Et (1a-3a, 5a, 7a and 8a); L = -OC(6)H(2)-4,6-(t)Bu(2)-2-CH(2)N[(CH(2))(2)OMe](2) (9a)), have been synthesized via the reaction of Zn[N(SiMe(3))(2)](2) and 1 equiv. of corresponding aminophenol. The reaction of Zn[N(SiMe(3))(2)](2) with the proligand L(6)H (2-{N-(2-methoxybenzyl)-N-[3-(N',N'-dimethylamino)propyl]aminomethyl}-4-methyl-6-tritylphenol) resulted in the formation of bisphenolate zinc complex 6 regardless of the stoichiometric ratio of the two starting materials. Complex 4b with an initiating group of 3-tert-butyl-2-methoxy-5- methylbenzyloxy was obtained and further studied via the X-ray diffraction method to be monomeric. Zinc ethyl complex 2c was also prepared from the reaction of ZnEt(2) and 1 equiv. of proligand L(2)H as the representative complex with an alkyl initiating group. All zinc silylamido complexes efficiently initiated the ring-opening polymerization of rac-lactide in the presence or absence of isopropanol at ambient temperature. The steric and electronic characteristics of the ancillary ligands significantly influenced the polymerization performance of the corresponding zinc complexes. The introduction of bulky ortho- substituents on the phenoxy moiety resulted in an apparent decrease of catalytic activity while a slightly enhanced isotactic selectivity. Meanwhile, the elongation of the pendant amine arm to three-carbon-atom linkage led to significant decline of the catalytic activity in the absence of isopropanol. The zinc ethyl complex 2c was not such an efficient initiator as the silylamido ones, but the alkoxy complex 4b gave an obviously faster and better controlled polymerization when compared to the zinc silylamido complexes.  相似文献   

16.
The addition compound Cl(3)SiSiCl(3)·TMEDA was formed quantitatively by treatment of Cl(3)SiSiCl(3) with tetramethylethylenediamine (TMEDA) in pentane at room temperature. The crystal structure of Cl(3)SiSiCl(3)·TMEDA displays one tetrahedrally and one octahedrally bonded Si atom (monoclinic, P2(1)/n). (29)Si CP/MAS NMR spectroscopy confirms this structure. Density functional theory (DFT) calculations have shown that the structure of the meridional isomer of Cl(3)SiSiCl(3)·TMEDA is 6.3 kcal lower in energy than that of facial coordinate species. Dissolving of Cl(3)SiSiCl(3)·TMEDA in CH(2)Cl(2) resulted in an immediate reaction by which oligochlorosilanes Si(n)Cl(2n) (n = 4, 6, 8, 10; precipitate) and the Cl(-)-complexed dianions [Si(n)Cl(2n+2)](2-) (n = 6, 8, 10, 12; CH(2)Cl(2) extract) were formed. The constitutions of these compounds were confirmed by MALDI mass spectrometry. Additionally, single crystals of [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(6)Cl(14)] and [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(8)Cl(18)] were obtained from the CH(2)Cl(2) extract. We found that Cl(3)SiSiCl(3)·TMEDA reacts with MeCl, forming MeSiCl(3) and the products that had been formed in the reaction of Cl(3)SiSiCl(3)·TMEDA with CH(2)Cl(2). X-ray structure analysis indicates that the structures of [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(6)Cl(14)] (monoclinic, P2(1)/n) and [Me(3)NCH(2)CH(2)NMe(2)](2)[Si(8)Cl(18)] (monoclinic, P2(1)/n) contain dianions adopting an "inverse sandwich" structure with inverse polarity and [Me(3)NCH(2)CH(2)NMe(2)](+) as countercations. Single crystals of SiCl(4)·TMEDA (monoclinic, Cc) could be isolated by thermolysis reaction of Cl(3)SiSiCl(3)·TMEDA (50 °C) in tetrahydrofuran (THF).  相似文献   

17.
18.
The metal complexes [M{HB(hpp)}(2)(CO)(4)] (M = Cr, Mo or W) and [M(cod){HB(hpp)}(2)Cl] (M = Rh or Ir) of the doubly-base stabilized diborane(4) ligand [HB(hpp)](2) were fully characterized and their bonding nature was investigated in detail. While bonding in the group 6 complexes predominantly occurs through the hydrogen atoms, the metal-ligand interaction in the group 9 complexes can be regarded as an early stage oxidative addition of the boron-boron bond leading to diboryl compounds.  相似文献   

19.
The unsymmetrical diphosphinomethane ligand Ph(2)PCH(2)P(NC(4)H(4))(2) L has been prepared from the reaction of Ph(2)PCH(2)Li with PCl(NC(4)H(4))(2). The diphenylphosphino group can be selectively oxidized with sulfur to give Ph(2)P(S)CH(2)P(NC(4)H(4))(2) 1. The reaction of L with [MCl(2)(cod)] (M = Pd, Pt) gives the chelate complexes [MCl(2)(L-kappa(2)P,P')] (2, M = Pd; 3, M = Pt) in which the M-P bond to the di(N-pyrrolyl)phosphino group is shorter than that to the corresponding diphenylphosphino group. However, the shorter Pd-P bond is cleaved on reaction of 2 with an additional 1 equiv of L to give [PdCl(2)(L-kappa(1)P)(2)] 4. Complex 4 reacts with [PdCl(2)(cod)] to regenerate 2, and with [Pd(2)(dba)(3)].CHCl(3) to give the palladium(I) dimer [Pd(2)Cl(2)(mu-L)(2)] 5, which exists in solution and the solid state as a 1:1 mixture of head-to-head (HH) and head-to-tail (HT) isomers. The palladium(II) dimer [Pd(2)Cl(2)(CH(3))(2)(mu-L)(2)] 6, formed by the reaction of [PdCl(CH(3))(cod)] with L, also exists in solution as a mixture of HH and HT isomers, although in this case the HT isomer prevails at low temperature and crystallizes preferentially. Complex 6 reacts with TlPF(6) to give the A-frame complex [Pd(2)(CH(3))(2)(mu-Cl)(mu-L)(2)]PF(6) 7. The reaction of L with [RuCp*(mu(3)-Cl)](4) leads to the dimer [Ru(2)Cp*(2)(mu-Cl)(2)(mu-L)] 8, for which the enthalpy of reaction has been measured. The reaction of L with [Rh(mu-Cl)(cod)](2) gives a mixture of compounds from which the dimer [Rh(2)(mu-Cl)(cod)(2)(mu-L)]PF(6) 9 can be isolated. The crystal structures of 2.CHCl(3), 3.CH(2)Cl(2), 4, 5.(1)/(4)CH(2)Cl(2), 6, 7.2CH(2)Cl(2), 8, and 9.CH(2)Cl(2) are reported.  相似文献   

20.
Herein we describe the importance of side chains in C3-symmetric ligands in supramolecular chemistry. The reaction of the new ligand tris(5-bromo-2-methoxybenzylidene)triaminoguanidinium chloride [H3Me3Br3L]Cl (1) with ZnCl2 results in the formation of the monomeric complex (Et3NH)2[(ZnCl2)3Me3Br3L] (2), in which the ligand remains in a conformation less favourable for the coordination of metal centres. The use of the related tris(5-bromo-2-hydroxybenzylidene)triaminoguanidinium chloride, [H6Br3L]Cl, under similar conditions, results in the formation of two different dimeric compounds (NH4)[{[Zn(NH3)]3Br3L}2{mu-(OH)}3]1/4MeOH (3) and [Zn{Zn2(OH2)3(NH3)Br3L}2] (4), depending on the solvent mixture used. The comparable reaction of the ligand tris(5-bromo-2-hydroxy-3-methoxybenzylidene)triaminoguanidinium chloride [H6(OMe)3Br3L]Cl (5), leads to the formation of a doughnut-shaped, protein-sized coordination oligomer (Et3NH)18[{Zn[Zn2Cl{(OMe)3Br3L}]2}6(mu-Cl)6(OH2)6]x CH3CN (6), which comprises six dimeric [Zn5{(OMe)3Br3L}2] units. Whereas 3 and 4 decompose in DMSO solution, 6 is surprisingly stable in the same solvent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号