首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The G-rich strand of human telomeric DNA can fold into a four-stranded structure called G-quadruplex and inhibit telomerase activity that is expressed in 85-90% tumor cells. For this reason, telomere quadruplex is emerging as a potential therapeutic target for cancer. Information on the structure of the quadruplex in the physiological environment is important for structure-based drug design targeting the quadruplex. Recent studies have raised significant controversy regarding the exact structure of the quadruplex formed by human telomeric DNA in a physiological relevant environment. Studies on the crystal prepared in K+ solution revealed a distinct propeller-shaped parallel-stranded conformation. However, many later works failed to confirm such structure in physiological K+ solution but rather led to the identification of a different hybrid-type mixed parallel/antiparallel quadruplex. Here we demonstrate that human telomere DNA adopts a parallel-stranded conformation in physiological K+ solution under molecular crowding conditions created by PEG. At the concentration of 40% (w/v), PEG induced complete structural conversion to a parallel-stranded G-quadruplex. We also show that the quadruplex formed under such a condition has unusual stability and significant negative impact on telomerase processivity. Since the environment inside cells is molecularly crowded, our results obtained under the cell mimicking condition suggest that the parallel-stranded quadruplex may be the more favored structure under physiological conditions, and drug design targeting the human telomeric quadruplex should take this into consideration.  相似文献   

2.
Qiao Y  Deng J  Jin Y  Chen G  Wang L 《The Analyst》2012,137(7):1663-1668
The G-rich overhang of human telomere tends to form a G-quadruplex structure, and G-quadruplex formation can effectively inhibit telomerase activity in most cancer cells. Therefore, it is important to identify the formation and properties of the G-quadruplex, with the particular aim of selecting G-quadruplex-binding ligands that could potentially lead to the development of anticancer therapeutic agents. With this goal in mind, we report a fluorescence resonance energy transfer (FRET) assay system for the identification of G-quadruplex ligands using DNA-functionalized gold nanoparticles (DNA-GNPs) as the fluorescence quencher and a carboxyfluorescein (FAM)-tagged human telomeric sequence (F-GDNA) as the recognition probe. A thiolated complementary strand of human telomeric DNA (cDNA), which first adheres to the surface of the GNPs and then hybridizes with F-GDNA, results in the fluorescence quenching of F-GDNA by the GNPs. However, fluorescence is restored when single-stranded F-GDNA folds into a G-quadruplex structure upon the binding of quadruplex ligands, leading to the release of F-GDNA from the surface of the GNPs. Combined data from fluorescence measurements and CD spectroscopy indicated that ligands selected by this FRET method could induce GDNA to form a G-quadruplex. Therefore, this FRET G-quadruplex assay is a simple and effective approach to identify quadruplex-binding ligands, and, as such, it promises to provide a solid foundation for the development of novel anticancer therapeutic agents.  相似文献   

3.
Inhibition of telomerase activity through stabilizing telomere G-quadruplex with small chemical ligands is emerging as a novel strategy for cancer therapy. For the large number of ligands that have been reported to inhibit telomerase activity, it is difficult to validate the contribution of G-quadruplex stabilization to the overall inhibition. Using a modified telomere repeat amplification protocol (TRAP) method to differentiate the telomere G-quadruplex independent effect from dependent ones, we analyzed several ligands that have high affinity and/or selectivity to telomere G-quadruplex. Our results show that these ligands effectively inhibited telomerase activity in the absence of telomere G-quadruplex. The expected G-quadruplex-dependent inhibition was only obvious for the cationic ligands at low K(+) concentration, but it dramatically decreased at physiological concentration of K(+). These observations demonstrate that the ligands are much more than G-quadruplex stabilizers with a strong G-quadruplex-irrelevant off-target effect. They inhibit telomerase via multiple pathways in which stabilization of telomere G-quadruplex may only make a minor or neglectable contribution under physiologically relevant conditions depending on the stability of telomere G-quadruplex under ligand-free conditions.  相似文献   

4.
设计合成了3个多胺取代的小檗碱衍生物5a~5c, 并利用圆二色(CD)光谱、 荧光共振能量转移(FRET)熔点实验、 荧光光谱和聚合酶链反应(PCR)终止实验等手段研究了小檗碱衍生物5a~5c与端粒DNA的相互作用. 结果表明, 小檗碱衍生物5a~5c可以诱导端粒DNA序列形成反平行结构G-四链体, 显著地提高了端粒G-四链体的稳定性, 有效地抑制了端粒的扩增; 而与双链DNA的相互作用则很小, 是高选择性的端粒G-四链体配体.  相似文献   

5.
Complexes that bind and stabilize G-quadruplex DNA structures are of significant interest due to their potential to inhibit telomerase and halt tumor cell proliferation. We here report the synthesis of the first Pt(II) G-quadruplex selective molecules, containing pi-extended phenanthroimidazole ligands. Binding studies of these complexes with duplex and quadruplex d(T(4)G(4)T(4))(4) DNA were performed. Intercalation to duplex DNA was established through UV/Vis titration, CD spectroscopy, and thermal denaturation studies. Significantly stronger binding affinity of these phenanthroimidazole Pt(II) complexes to G-quadruplex DNA was observed by UV/Vis spectroscopy and competitive equilibrium dialysis studies. Observed binding constants to quadruplex DNA were nearly two orders of magnitude greater than for duplex DNA. Circular dichroism studies show that an increase in pi-surface leads to a significant increase in the thermal stability of the Pt(II)/quadruplex DNA complex. The match in the pi-surface of these phenanthroimidazole Pt(II) complexes with quadruplex DNA was further substantiated by molecular modeling studies. Numerous favorable pi-stacking interactions with the large aromatic surface of the intermolecular G-quadruplex, and unforeseen hydrogen bonds between the ancillary ethylenediamine ligands and the quadruplex phosphate backbone are predicted. Thus, both biological and computational studies suggest that coupling the square-planar geometry of Pt(II) with pi-extended ligands results in a simple and modular method to create effective G-quadruplex selective binders, which can be readily optimized for use in telomerase-based antitumor therapy.  相似文献   

6.
Various biologically relevant G-quadruplex DNA structures offer a platform for therapeutic intervention for altering the gene expression or by halting the function of proteins associated with telomeres. One of the prominent strategies to explore the therapeutic potential of quadruplex DNA structures is by stabilizing them with small molecule ligands. Here we report the synthesis of bisquinolinium and bispyridinium derivatives of 1,8-naphthyridine and their interaction with human telomeric DNA and promoter G-quadruplex forming DNAs. The interactions of ligands with quadruplex forming DNAs were studied by various biophysical, biochemical, and computational methods. Results indicated that bisquinolinium ligands bind tightly and selectively to quadruplex DNAs at low ligand concentration (~0.2-0.4 μM). Furthermore, thermal melting studies revealed that ligands imparted higher stabilization for quadruplex DNA (an increase in the T(m) of up to 21 °C for human telomeric G-quadruplex DNA and >25 °C for promoter G-quadruplex DNAs) than duplex DNA (ΔT(m) ≤ 1.6 °C). Molecular dynamics simulations revealed that the end-stacking binding mode was favored for ligands with low binding free energy. Taken together, the results indicate that the naphthyridine-based ligands with quinolinium and pyridinium side chains form a promising class of quadruplex DNA stabilizing agents having high selectivity for quadruplex DNA structures over duplex DNA structures.  相似文献   

7.
A series of metalloporphyrins was prepared in order to target the G-quadruplex structure of telomeric DNA for the design of antitelomerase compounds. The initial cationic tetramethylpyridiniumyl porphyrin was modified by the replacement of one or two methylpyridiniumyl groups by one or two 4-aminoquinoline moieties, at the meso position, in order to increase the cell penetration and the quadruplex affinity. The porphyrins were either metallated by manganese or by nickel. The degradation of quadruplex DNA was assayed in vitro with the manganese redox-active derivatives. All porphyrins complexes were capable of inhibiting the telomerase enzyme with IC50 values in the micromolar range (TRAP assay).  相似文献   

8.
Telomeric DNA is a potential selective target for cancer therapy since the tumour-associated enzyme telomerase regulates telomere maintenance in most cancer cells. The 3′ single-stranded ends of telomeric DNA can be folded into quadruplex structures by appropriate small molecules. We describe the preparation of a new class of 2,7-disubstituted 10H-indolo[3,2-b]quinolines with enhanced selectivity for the stabilisation of quadruplex DNA compared to duplex DNA, and also the preparation of a key intermediate for the synthesis of trisubstituted quindolines.  相似文献   

9.
Two arene ruthenium complexes [Ru(η(6)-C(6)H(6))(p-MOPIP)Cl](+)1 and [Ru(η(6)-C(6)H(6))(p-CFPIP)Cl](+)2, where p-MOPIP = 2-(4-methoxyphenyl)-imidazo[4,5f][1,10] phenanthroline and p-CFPIP = 2-(4-trifluoromethylphenyl)-imidazo[4,5f][1,10] phenanthroline, were prepared and the interactions of these compounds with DNA oligomers 5'-G3(T2AG3)3-3'(HTG21) have been studied by UV-vis and circular dichroism (CD) spectroscopy, gel mobility shift assay, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay and telomeric repeat amplification protocol (TRAP) assay. The results show that both complexes can induce the stabilization of quadruplex DNA but complex 1 is a better G-quadruplex binder than complex 2. The two ruthenium complexes tested led to an inhibition of the enzyme telomerase and complex 1 was the significantly better inhibitor. A novel visual method has been developed for making a distinction between G-quadruplex DNA and double DNA by our Ru complexes binding hemin to form the hemin-G-quadruplex DNAzyme. Furthermore, in vitro cytotoxicity studies showed complex 1 exhibited quite potent antitumor activities and the greatest inhibitory selectivity against cancer cell lines.  相似文献   

10.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

11.
The first crystal structure of a drug (daunomycin) bound to a parallel-stranded intermolecular telomeric G4 quadruplex (d(TGGGGT)4) has been determined to high resolution. A planar assemblage of three daunomycin molecules stacks onto the 5' end of the G4 column, with the daunosamine substituents occupying three of the four quadruplex grooves. The surface area of the terminal G-quartet in this parallel DNA quadruplex, presently occupied by three daunomycins, is sufficiently large that it could easily accommodate other potential telomerase inhibitors such as substituted porphyrins or telomestatin.  相似文献   

12.
G-quadruplex structures are attractive targets for the development of anticancer drugs, as their formation in human telomere could impair telomerase activity, thus inducing apoptosis in cancer cells. In this work, a thiophene-containing dinuclear ruthenium(II) complex, [Ru2(bpy)4(H2bipt)]4+ {bpy = 2,2′-bipyridine, H2bipt = 2,5-bis[1,10]phenanthrolin[4,5-f]-(imidazol-2-yl)thiophene}, was prepared and the interaction between the complex and human telomeric DNA oligomers 5′-G3(T2AG3)3-3′ (HTG21) has been investigated by UV-Vis, fluorescence and circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assay, polymerase chain reaction (PCR) stop assay, fluorescent intercalator displacement (FID) titrations, Job plot and color reaction studies. The results indicate that the complex can well induce and stabilize the formation of antiparallel G-quadruplex of telomeric DNA in the presence or absence of metal cations, and the ΔTm value of the G-quadruplex DNA treated with the complex was obtained to be 12.8 °C even at levels of 50-fold molar of duplex DNA (calf-thymus DNA), suggesting that the complex exhibits higher G-quadruplex DNA selectivity over duplex DNA. The complex shows high interaction ability with G-quadruplex DNA at (1.17 ± 0.12) × 107 M?1 binding affinity using a 2:1 [complex]/[quadruplex] binding mode ratio. A novel visual method has been developed here for making a distinction between G-quadruplex DNA and duplex DNA by our ruthenium complex binding hemin to form the hemin-G-quadruplex DNAzyme.  相似文献   

13.
DNA is considered an important target for drug design and development. Until recently, the focus was on double-stranded (duplex) DNA structures. However, it has now been shown that single stranded DNA can fold into hairpin, triplex, i-motif and G-quadruplex structures. The more interesting G-quadruplex DNA structures comprise four strands of stacked guanine (G)-tetrads formed by the coplanar arrangement of four guanines, held together by Hoogsteen bonds. The DNA sequences with potential to form G-quadruplex structures are found at the chromosomal extremities (i.e. the telomeres) and also at the intra-chromosomal region (i.e. oncogenic promoters) in several important oncogenes. The formation of G-quadruplex structures is considered to have important consequences at the cellular level and such structures have been evoked in the control of expression of certain genes involved in carcinogenesis (c-myc, c-kit, K-ras etc.) as well as in the perturbation of telomeric organization. It has been shown that the formation of quadruplexes inhibits the telomere extension by the telomerase enzyme, which is up-regulated in cancer cells. Therefore, G-quadruplex structures are an important target for drug design and development and there is a huge interest in design and development of small molecules (ligands) to target these structures. A large number of so-called G-quadruplex ligands, displaying varying degrees of affinity and more importantly selectivity (i.e. the ability to interact only with quadruplex-DNA and not duplex-DNA), have been reported. Access to efficient and robust in vitro assays is needed to effectively monitor and quantify the G-quadruplex DNA/ligand interactions. This tutorial review provides an overview of G-quadruplex ligands and biophysical techniques available to monitor such interactions.  相似文献   

14.
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.  相似文献   

15.
A series of platinum(II) complexes containing dipyridophenazine (dppz) and C-deprotonated 2-phenylpyridine (N-CH) ligands were prepared and assayed for G-quadruplex DNA binding activities. [PtII(dppz-COOH)(N-C)]CF3SO3 (1; dppz-COOH = 11-carboxydipyrido[3,2-a:2',3'-c]phenazine) binds G-quadruplex DNA through an external end-stacking mode with a binding affinity of approximately 10(7) dm3 mol-1. G-quadruplex DNA binding is accompanied by up to a 293-fold increase in the intensity of photoluminescence at lambdamax = 512 nm. Using a biotinylated-primer extension telomerase assay, 1 was shown to be an effective inhibitor of human telomerase in vitro, with a telIC50 value of 760 nM.  相似文献   

16.
DNA G-四链体识别探针研究进展   总被引:1,自引:0,他引:1  
G-四链体是一种由富含鸟嘌呤核酸序列形成的独特的二级结构,广泛分布于真核生物基因组,如端粒DNA、r DNA和一系列基因中的启动子区域。G-四链体结构对很多重要的生理过程如基因的转录、复制、重组以及保持染色体的稳定性方面具有重要作用。G-四链体的特异、高灵敏检测将为进一步了解G-四链体结构在人类细胞基因组中的分布、功能和机制奠定基础,也可能为靶向G-四链体的肿瘤治疗方法提供新的思路。因而过去几十年人们一直致力于开发设计具有高选择性和高灵敏度的G-四链体识别探针,这些探针已经广泛应用于溶液中G-四链体的识别,而且具有良好的选择性。目前也有少数探针能够直接用于检测活体G-四链体结构。本文综述了一些常见的靶向G-四链体的小分子配体,以及它们在染色体和活体细胞G-四链体检测中的应用。笔者希冀本文能为设计识别G-四链体的高性能探针,进一步实现活细胞内G-四链体的检测提供借鉴。  相似文献   

17.
核酸中富含短的G-碱基重复的序列可以形成一种复杂的高级结构,称为G-四链体(G-quadruplex).在基因组中,借助生物信息学发现这类富G序列广泛分布在基因的启动子区,特别是那些参与到复制中去的基因,例如癌基因.同时发现这类序列在mRNA的5′非翻译区(5′UTR)也广泛存在.这类序列在染色体末段端粒部位的存在及功能已得到充分阐明.已知端粒富含G-碱基序列,其3′末端以单链状态存在,这使得在一些小分子的选择性作用下端粒序列很容易形成G-四链体结构,进而破坏端粒结构,影响端粒酶活性.已知端粒酶在超过85%的肿瘤中过量表达,因此,端粒酶已经成为抗癌药物设计的特殊靶点,是目前本领域的研究热点之一.已发现系列配体通过有效抑制端粒酶而表现高的抗肿瘤活性.本文主要综述了近年来端粒G-四链体分子识别及其药物靶向的最新进展,并对其作用机理做了进一步的分析和探讨.  相似文献   

18.
We describe a novel synthetic small molecule which shows an unprecedented stabilization of the human telomeric G-quadruplex with high selectivity relative to double-stranded DNA. We report that this compound can be used in vitro to inhibit telomerase activity and to uncap human POT1 (protection of telomeres 1) from the telomeric G-overhang. We also show that the small molecule G-quadruplex binder induces a partial alteration of shelterin through POT1 uncapping from telomeres in human HT1080 cancer cells and the presence of gammaH2AX foci colocalized at telomeres.  相似文献   

19.
G-quadruplex structures formed by DNA at the human telomeres are attractive anticancer targets. Human telomeric sequences can adopt a diverse range of intramolecular G-quadruplex conformations: a parallel-stranded conformation was observed in the crystalline state, while at least four other forms were seen in K(+) solution, raising the question of which conformation is favored in crowded cellular environment. Here, we report the first NMR structure of a human telomeric G-quadruplex in crowded solution. We show that four different G-quadruplex conformations are converted to a propeller-type parallel-stranded G-quadruplex in K(+)-containing crowded solution due to water depletion. This study also reveals the formation of a new higher-order G-quadruplex structure under molecular crowding conditions. Our molecular dynamics simulations of solvent distribution provide insights at molecular level on the formation of parallel-stranded G-quadruplex in environment depleted of water. These results regarding human telomeric DNA can be extended to oncogenic promoters and other genomic G-rich sequences.  相似文献   

20.
Human telomeric DNA is now known to be transcribed into noncoding RNA sequences, termed TERRA. These sequences, which are believed to play roles in the regulation of telomere function, can form higher-order quadruplex structures and may themselves be the target of therapeutic intervention. The crystal structure of a TERRA quadruplex-acridine small-molecule complex at a resolution of 2.60 ?, is reported here and contrasts remarkably with the structure of the analogous DNA quadruplex complex. The bimolecular RNA complex has a parallel-stranded topology with propeller-like UUA loops. These loops are held in particular conformations by multiple hydrogen bonds involving the O2' hydroxyl groups of the ribonucleotide sugars and play an active role in binding the acridine molecules to the RNA quadruplex. By contrast, the analogous DNA quadruplex complex has simpler 1:1 acridine binding, with no loop involvement. There are significant loop conformational changes in the RNA quadruplex compared to the native TERRA quadruplex (Collie, G. W.; Haider, S. M.; Neidle, S.; Parkinson, G. N. Nucleic Acids Res. 2010, 38, 5569 - 5580), which have implications for the future design of small molecules targeting TERRA quadruplexes, and RNA quadruplexes more generally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号