首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Plasma chemical reactions in CH4/Ar and C2Hm/Ar (m = 2, 4, 6) gas mixtures in a dielectric barrier discharge at medium pressure (300 mbar) have been investigated. From mass spectrometry the production of H2 and formation of larger hydrocarbons such as CnHm with up to n = 12 is inferred. Hydrogen release is most pronounced for CH4 and C2H6 gas mixtures. Fourier Transform InfraRed (FTIR) spectroscopy reveals the formation of substituted alkane (sp3), alkene (sp2), and alkyne (sp) groups from the individual gases which are used in this work. Abundant formation of acetylene occurs from C2H4 and to a lesser extent from C2H6 and CH4 precursor gases. The main reaction pathway of acetylene leads to the formation of large molecules via C4H2 and, eventually, to nano‐size particles. The experimental results are in reasonable agreement with simulations which predict a pronounced electron temperature and gas pressure dependency. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
Using first-principles theory, we investigate the Pd-doping effect on the geometric and electronic behaviors of MoSe2 monolayer, and the adsorption behavior of Pd-MoSe2 monolayer upon four toxic gases, namely NO, NO2 SO2 and H2S. Desorption property of Pd-MoSe2 monolayer upon four gases at diverse temperatures is analyzed as well to help explore its potential application. For Pd dopant adsorption onto MoSe2 monolayer, somewhat n-type doping is determined, which accounts for the increased conductivity for intrinsic MoSe2 monolayer. The strong adsorption ability and poor desorption performance of Pd-MoSe2 monolayer upon four gases indicate its large potential as gas scavenger to remove these toxic gases from their surroundings. Moreover, it could be explored as a gas sensor for detection of NO, NO2 and H2S as well, given the obvious change in conductivity after gas adsorption based on band structure analysis. Our calculations would be beneficial to understand the TM doping effect on intrinsic MoSe2 monolayer and to provide a first insight into the potential application as gas sensor or sweeper for Pd-MoSe2 monolayer.  相似文献   

3.
《Surface science》1986,173(1):138-147
The adsorption kinetics of C2H2 and C2H4 gases on W(110) have been studied using Auger electron spectroscopy and qualitative LEED. Below 1100 K, adsorption of either C2H2; or C2H4 does not follow any simple kinetic model to saturation. At 1100 K adsorption is identical for both gases and follows first order monolayer kinetics with unity sticking coefficient and a carbon-to-tungsten atomic ratio of 0.64 ± 0.05. This carbon is present as a surface carbide which starts to in-diffuse about 1500 K and has completely dissolved after a few seconds at 2400 K.  相似文献   

4.
《Surface science》1987,181(3):573-585
The adsorption of C2H2 and C2H4 on Ir(111) is studied within the temperature range 180–500 K by the HREELS and XPS methods. The absolute concentration of hydrocarbon coverage is estimated by XPS. Data are obtained on the kinetics of adsorption of the two gases at different temperatures. It is established by HREELS studies that at 180 K C2H4 forms ethylidyne (CCH3 whereas C2H2 is adsorbed as CCH and ethylidyne species. At 300 K both kinds of species are found on the Ir(111) surface after C2H2 or C2H4 exposures. The ethylidyne decomposes completely to CCH at 500 K, which can be accompanied by polymerization of adsorbed hydrocarbon species.  相似文献   

5.
Rezvan Rahimi 《Molecular physics》2018,116(17):2196-2204
In this work, an attempt has been made to study sensing performance of bowl-like B30 nanostructure towards toxic cyanogen gas using density functional theory (DFT) at B97D/6-31+G(d) computational level. The results reveal that B30 nanostructure is a proper sensor for sensing of toxic cyanogen gas. The most favourite adsorption site of B30 is the exterior boron atoms that lead to the adsorption energy of ?78.48 (kJ/mol) with the remarkable change in electronic properties of B30. The competitive sensing of cyanogen gas in the presence of water, oxygen and nitrogen molecules is also considered. Significant changes in the electronic properties of B30 due to adsorption of cyanogen in presence of O2, H2O and N2 gases enable it to be used in the detection of toxic cyanogen gas in air.  相似文献   

6.
《Surface science》1986,167(1):1-17
Fully dehydrogenated carbon deposits in the monolayer range have been characterized on the Pt(111) face by LEED, Auger and Δφ observations. These techniques pointed to the graphitic character of such deposits at least beyond about 0.5 monolayer of carbon. The gradual deactivation of the Pt surface towards CO or C6H6 adsorption with increasing carbon coverage has been explained by the nucleation and the growth of numerous inactive graphitic islands. The loss of chemisorptive properties only occurs for a complete carbon monolayer which may be viewed as a passive film masking the metal surface. Some weakening in the binding energy of CO, C6H6 and H2 has been evidenced on a surface partially covered with carbon. This additional effect of carbon has been discussed mainly in relation with Δφ measurements.  相似文献   

7.
There have been numerous attempts to use ultraviolet photoemission spcctroscopy (UPS) to monitor the chemical states of adsorbed gas molecules on metal surfaces. To interpret the data correctly, one has to determine the effect of photoemission on the measured energy levels of the molecule. We have measured the UPS spectra of seven gases (C6H6, C5H5N, CH3OH, C2H5OH, H2CO, H2O, NH3) condensed on a LN2 cooled MoS2 substrate at hv = 21.2 eV. The inertness of the MoS2 substrate assures that no strong chemical bonding exists between the substrate and adsorbed molecules. For each gas, the spectrum of the condensed phase is similar to the corresponding spectrum of the gas phase except all the energy levels are shifted up by the same amount. This shift ranges from 1 to 1.65 eV for the gases studied. The energy shift is attributed to the dielectric screening of the hole produced during the optical excitation.  相似文献   

8.
The adsorption of gases on Ag(110) has been studied using inelastic He atom scattering. Vibrational spectra have been obtained for Kr, Xe, C2H6, C2H4, CH4, CF4, CHF3, CO2 and H2O. Spectra have also been obtained for multilayers of Xe (2 layers) and C2H6 (3 and 4 layers) where the energy changes move to lower values. The scattering from Kr and Xe can be shown to be dispersionless as has been previously found for these adsorbates on Cu(100) and Cu(110). The energy changes for Kr and Xe are smaller than on Cu surfaces and attempts were made to account for this based on an Einstein model of the adsorbed atoms in the surface holding potential.  相似文献   

9.
Density-dependent 13C nuclear magnetic shielding has been found for each of the pure gases CH4, C2H6, C2H4, CO and CO2, and for several binary mixtures of gases. For methane gas the density dependence is greater at higher temperatures in contrast to expectation and the observed temperature dependence of the shielding at zero density is attributable to nuclear motion. 13C magnetic shielding is considerably higher in the gas phase than in the liquid phase and the difference varies for chemically non-equivalent 13C nuclei by amounts which are well above the level of experimental error.  相似文献   

10.
《Physics letters. A》2020,384(1):126036
In lung cancer, primary diagnosis is quite essential to guarantee human health. In this work, the capability of γ-graphyne and twin-graphene sheets to detect typical breath gases such as benzene, styrene, aniline, and o-toluidine is studied based on density functional theory. The results indicate that these gases are physisorbed on γ-graphyne and twin-graphene. Because of relatively low gas binding strength between gases and γ-graphyne and twin-graphene, these sheets can be proper for the practical gas sensors with a fast recovery rate. Both γ-graphyne and twin-graphene have semiconducting properties before and after gas adsorption. Adsorption of the gases decreases the energy band gap, and increases the electric dipole moment of γ-graphyne and twin-graphene. The electronic properties of twin-graphene are more sensitive than that of γ-graphyne to the presence of the considered gases. Hence, twin-graphene can be desirable and promising material for sensing typical breath gases to diagnose lung cancer.  相似文献   

11.
Spatial distributions of rotational temperatures and molecular number densities of C2H2 and H2 were measured with CARS during the production of ultrafine SiC powders in a laser pyrolytic process flame. By means of a CO2 laser, the reaction gases SiH4 and C2H2 (or alternatively C2H4) are converted into SiC and H2. From the CARS measurements temperature gradients are determined between 8.8 × 105 K/m and 1.6 × 106 K/m with corresponding heating rates of 1.8 × 106 K/s and 1.3 × 106 K/s. The CARS data also allow an estimation of the gas expansion behaviour in the reaction zone. Moreover, they show that diffusive velocity components of the hydrogen in the hot reaction zone do not exceed 0.4 m/s.  相似文献   

12.
Hao Cui  Jun Zhang  Ju Tang 《Molecular physics》2018,116(13):1749-1755
Metal nanocluster decorated single-walled carbon nanotubes (SWCNT) with improved adsorption behaviour towards gaseous molecules compared with intrinsic ones, have been widely accepted as a workable media for gas interaction due to their strong catalysis. In this work, Pd4 cluster is determined as a catalytic centre to theoretically study the adsorption property of Pd4-decorated SWCNT upon SF6 decomposed species. Results indicate that Pd4-SWCNT possessing good responses and sensitivities towards three composed species of SF6 could realise selective detection for them according to the different conductivity changes resulting from the varying adsorption ability. The response of Pd4-SWCNT upon three molecules in order is SOF2 > H2S > SO2, and the conductivity of the proposed material is about to increase in SOF2 and H2S systems, while declining in SO2 system. Such conclusions would be helpful for experimentalists to explore novel SWCNT-based sensors in evaluating the operating state of SF6 insulation devices.  相似文献   

13.
当一束具有一定能量和强度的电子束轰击超高真空系统中残余的水汽、一氧化碳和二氧化碳时,将导致这些气体分子通过如下反应:H2O→Oad+H2,CO2→Oad+CO,CO→Oad+Cad分解并共吸于镍表面。碳和氧的原子各自占据镍(001)面部份四重吸附位置,形成结构为p(2×2)或c(2×2)的许多独立的吸附畴,电子束轰击促进畴的成核、长大、连结和有序化。当氧和碳的原子占据了镍(001)面约一半的四重吸附位后,上述吸附反应将与导致氧和碳的脱附反应:C*+Oad→CO,O*+Cad→CO平衡,氧化镍与碳化镍开始成核。由于残余含氧气体中氧的含量超过碳,氧化镍成核占优势,使碳的吸附被排斥,已吸附的碳被排挤,形成电子束斑内氧高碳低、束斑外碳高氧低的“互补”分布。电子束轰击过程中碳的俄歇峰形的变化反映着碳原子与基底原子的不同结合状态。电子束的解离效应在吸附的初始阶段起重要作用,而其热效应对氧化镍的长大起重要作用。 关键词:  相似文献   

14.
Muon spin rotation (μSR) and avoided level crossing resonance (ALCR) have been used to determine the hyperfine coupling constants (hfcs) of the muonium-substituted cyclohexadienyl radicals C6H6Mu, C6D6Mu and C6F6Mu in the gas phase, at pressures ~1 and 15 atm and temperatures in the range 40–80°C. Equivalent studies of polyatomic free radicals in gases, by electron spin resonance (ESR) spectroscopy, are generally not possible in this pressure range. The present gas phase results support the findings of earlier studies of cyclohexadienyl radicals in the condensed phase, by both μSR and ESR. Minor but not insignificant (~1%) effects on the hfcs are observed, which can be qualitatively understood for such nonpolar media in terms of their differing polarizabilities. This is the first time that comparisons of this nature have been possible between different phases at the same temperatures. These μSR/ALCR gas-phase results provide a valuable benchmark for computational studies on radicals, free from possible effects of solvent or matrix environments.  相似文献   

15.
Ultralong ZnO nanowires were successfully synthesized by a simple hydrothermal reaction of Zn foil and aqueous Na2C2O4 solution at 140°C. The as-synthesized ZnO nanowires are single crystalline with the wurtzite structure and grow in the [0001] direction. The role of Na2C2O4 in the formation of ultralong ZnO nanowires was investigated, and a possible mechanism was also proposed to account for the formation of the ultralong ZnO nanowires. The gas sensor fabricated on the basis of the ultralong ZnO nanowires showed excellent response characteristics towards NH3 and N(C2H5)3 vapors with low concentration, and its detection limits for NH3 and N(C2H5)3 are about 0.2 and 0.15 ppm at the working temperature of 180°C, respectively. This result suggests potential applications of the ultralong ZnO nanowires in monitoring flammable, toxic and corrosive gases.  相似文献   

16.
ABSTRACT

In the last three decades, the air pollution is the main problem to affect human health and the environment in China and its contaminants include SO2, NH3, H2S, NO2, NO and CO. In this work, we employed grand canonical Monte Carlo simulations to investigate the adsorption capability of metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) for these toxic gases. Eighty-nine MOFs and COFs were studied, and top-10 adsorption materials were screened for each toxic gas at room temperature. Dependence of the adsorption performance on the geometry and constructed element of MOFs/COFs was determined and the adsorption conditions were optimised. The open metal sites have mainly influenced the adsorption of NH3, H2S, NO2 and NO. Especially, the X-DOBDC and XMOF-74 (X = Mg, Co, Ni, Zn) series of materials containing open metal sites are all best performance for adsorption of NH3 to illustrate the importance of electrostatic interaction. Our simulation results also showed that ZnBDC and IRMOF-13 are good candidates to capture the toxic gases NH3, H2S, NO2, NO and CO. This work provides important insights in screening MOF and COF materials with satisfactory performance for toxic gas removal.  相似文献   

17.
Experiments with UPS, metastable noble gas deexcitation spectroscopy (MDS) and thermal desorption demonstrated that C2H2 adsorbed on Pd(111) at 140 K undergoes cyclotrimerisation to C6H6 after higher (? 100 L) exposures. If the surface is intermediately warmed up to 300 K, the low temperature state of adsorbed acetylene transforms irreversibly into another species which is unreactive. The surface species formed by reaction was identified by comparison with the electron spectroscopic data of C6H6 adsorbed from the gas phase as well as with those of free C6H6. The molecules are only weaky held on the surface and start to desorb already at about 150 K.  相似文献   

18.
Structures of several premixed ethylene-oxygen-argon rich flat flames burning at 50 mbar have been established by using molecular beam mass spectrometry in order to investigate the effect of CO2, or NH3, or H2O addition on species concentration profiles. The aim of this study is to examine the eventual changes of profiles of detected hydrocarbon intermediates which could be considered as soot precursors (C2H2, C4H2, C5H4, C5H6, C6H2, C6H4, C6H6, C7H8, C6H6O, C8H6, C8H8, C9H8 and C10H8). The comparative study has been achieved on four flames with an equivalence ratio (f) of 2.50: one without any additive (F2.50), one with 15% of CO2 replacing the same quantity of argon (F2.50C), one with 3.3% of NH3 in partial replacement of argon (F2.50N) and one with 13% of H2O in replacement of the same quantity of argon (F2.50H). The four flat flames have similar final flame temperatures (1800 K).CO2, or NH3, or H2O addition to the fresh gas inlet causes a shift downstream of the flame front and thus flame inhibition. Endothermic processes CO2 + H = CO + OH and H2O + H = H2 + OH are responsible of the reduction of the hydrocarbon intermediates in the CO2 and H2O added flames through the supplementary formation of hydroxyl radicals. It has been demonstrated that such processes begin to play at the end of the flame front and becomes more efficient in the burnt gases region.The replacement of some Ar by NH3 is responsible only for a slight decrease of the maximum mole fraction of C2H2, but NH3 becomes much more efficient for C4H2 and C5 to C10 species. Moreover, the efficiency of NH3 as a reducing agent of C5 to C10 intermediates is larger than that of CO2 and H2O for equal quantities added.  相似文献   

19.
The sensor response of a thermocatalytic gas sensor with a heater made of single-crystal p-type silicon to gases H2, CO, CH4, and C3H8 is studied. The sensor response to propane, carbon monoxide, and hydrogen has positive and negative components. The positive sensor responses to carbon monoxide and propane exhibit well pronounced maxima at silicon heater currents of 21 and 23 mA, respectively. For hydrogen, the maximum sensor response depends on the gas concentration. This specific feature of the sensor response to hydrogen is explained by the sequential action of the following two processes: absorption of H2 molecules on the silicon heater surface and the catalytic oxidation of hydrogen on a Pt-Pd catalyst. The sensor response to methane only has a negative component.  相似文献   

20.
The behavior of the desorbing F+ ion current from electron bombarded CCl2F2, C2H2F2 and C2F6 adsorbed on tungsten has been used to investigate the processes of adsorption and desorption of these gases. For tungsten near room temperature, measurements of the F+ ion current as a function of electron bombardment time indicated very similar or even identical F+-yielding adsorbed species resulting from adsorption of either CCl2F2 or C2H2F2 and widely different species from C2F6. Cl+ ions were also observed to desorb from CCl2F2 ad-layers. The behavior of the Cl+ ion current with time during electron bombardment indicated electronic conversion between adsorbed binding modes. Complementary investigations on the interaction of CCl2F2, C2H2F2 and C2F6 with tungsten were carried out by thermal desorption experiments in which the F+ ion signal was used to observe the coverage decrease of the F+-yielding species. The experiments were performed at tungsten temperatures in the 1200–1600 K range. It was concluded that the F+-yielding adsorbed species from CCl2F2 and C2H2F2 were strongly bound to the tungsten surface. The F+-yielding species from C2F6 were found to be weakly bound. From a comparison of the ESD and thermal desorption results, the possibility of dissociative adsorption as well as the nature of the adsorbed species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号