首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A detailed computational study has been performed at the QCISD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p) level for the NCO with CH3 reaction by constructing singlet and triplet potential energy surfaces (PES). The results show that the title reaction is more favorable for the singlet PES than the triplet PES. On the singlet PES, the dominant channel is the barrierless addition of the O or N atom to the C atom of the methyl group to form CH3NCO (IM1) and CH3OCN (IM2). On the triplet PES, the favorable channel is the barrierless addition of the N atom to the C atom of the methyl group to form an intermediate CH3NCO (3IM2), which then undergoes a N–C bond scission process to give out CH3N + CO.  相似文献   

2.
Highly correlated calculations at the multi-reference configuration interaction levels including singles and doubles excitations (MR-CISD) and extensivity corrections (MR-CISD?+?Q) have been performed to study some low-lying valence and Rydberg states of the CF3 radical. Our highest level results (at the MR-CISD?+?Q level) yield the following energy ordering: 3s (7.90?eV)?2A2 (8.61?eV)?π (8.72?eV)?z (8.73?eV). MR-CISD results indicate transitions of similar intensities from the ground to the following three final states, in the following order: 3pπ?>?3pz?>?3s. It has also been found that the aforementioned Rydberg states should be responsible for visible emissions and correspond to transitions between bound states. Therefore, it is suggested that the lack of vibrational structure in the visible band of parent systems (e.g. CF3Cl) may be due to a transition from a bound to an unbound state of the parent molecule.  相似文献   

3.
Ab initio and density functional calculations have been performed to elucidate the mechanism of CH radical insertion into methane. The results show that the reaction can be viewed to occur via two stages. On the first stage, the CH radical approaches methane without large structural changes to acquire proper positioning for the subsequent stage, where H-migration occurs from CH4 to CH, along with a C–C bond formation. Where the first stage ends and the second begins, a tight transition state was located using the B3LYP/6-311G(d,p) and MP4(SDQ)/6-311++G(d,p) methods. Using a rigid rotor – harmonic oscillator approach within transition state theory, we show that at the MP5/6-311++G(d,p)//MP4(SDQ)/6-311++G(d,p) level the calculated rate constants are in a reasonably good agreement with experiment in a broad temperature range of 145–581 K. Even at low temperatures, the insertion reaction bottleneck is found about the location of the tight transition state, rather than at long separations between the CH and CH4 reactants. In addition, high level CCSD(T)-F12/CBS calculations of the remainder of the C2H5 potential energy surface predict the CH+CH4 reaction to proceed via the initial insertion step to the ethyl radical which then can emit a hydrogen atom to form highly exothermic C2H4+H products.  相似文献   

4.
5.
《Molecular physics》2012,110(17):2043-2053
Hydrogen-broadening coefficients of methyl chloride rotational lines J?=?6?→?7, 10?→?11, 17?→?18, 22?→?23 and 31?→?32 at 296?K are measured as functions of the quantum number K using a sensitive frequency-modulation technique. As expected for this light perturber, the observed line shapes are well described by Voigt profile model. A clear dependence of the collisional broadening on K is observed for most transitions. From a detailed study of the K-components of the transition J?=?6?→?7 situated at 186?GHz no variation of the broadening of the hyperfine components related to 35Cl quadrupole is stated. Given the absence of refined ab initio computed potential energy surfaces and the impracticality of quantum-mechanical calculations for the considered molecular system, theoretical values of these broadening coefficients are estimated by a semi-classical approach with exact trajectories and a model interaction potential including both long-range and short-range (atom-atom) interactions of the active molecule rigorously treated as a symmetric top. It is shown that the short-range forces yield important contributions to the collisional line width for all values of the rotational quantum numbers J and K. Various models are also tested for the isotropic part of the interaction potential which governs the relative translational motion. It is demonstrated that for the very light perturbing molecule H2 the calculated line widths, practically independent from the rotational quantum number J (for K?≤?J), are particularly sensitive to the position and slope of the repulsive wall. Modifications required in the semi-classical formalism for a correct application of the cumulant expansion are also tested and it is stated that no difference is observed for the CH3Cl–H2 system characterised by quite weak interactions.  相似文献   

6.
7.
Theoretical investigation has been carried out on the mechanism, kinetics and thermochemistry of the gas-phase reactions between CHF2CF2OCH2CF3 and OH radical using a new hybrid density functional M06-2X/6-31+G(d,p) and G2(MP2)//M06-2X/6-31+G(d,p) methods. The most stable conformer of CHF2CF2OCH2CF3 is considered in our study and the possible H-abstraction reaction channels are identified. Each reaction channel shows an indirect H-abstraction reaction mechanism via the formation of pre-reactive complex. The rate coefficients are determined for the first time over a wide range of temperature 250–1000 K. At 298 K, the calculated total rate coefficient of kOH = 1.01×10?14 cm3 molecule?1 s?1 is in good agreement with the experimental results. The heats of formation for CHF2CF2OCH2CF3 and CF2CF2OCH2CF3 and CHF2CF2OCHCF3 radicals are estimated to be -1739.25, -1512.93 and -1523.94 kJ mol?1, respectively. The bond dissociation energies of the two C-H bonds are C(-H)F2CF2OCH2CF3: 423.34 kJ mol?1 and CHF2CF2OC(-H)HCF3: 411.87 kJ mol?1. The atmospheric lifetime of CHF2CF2OCH2CF3 is estimated to be around 4.5 years and the 100-year time horizon global warming potentials of CHF2CF2OCH2CF3 relative to CO2 is estimated to be 601.  相似文献   

8.
ABSTRACT

Metal-free catalysts have attracted more attention due to their highly active in catalytic oxidation reactions. The electronic structure and catalytic property of BC3 sheet are investigated by using first-principles calculations. It is found that the BC3 sheet as the active surface can effectively regulate the adsorptive stability of reactive gases. Besides, the possible reaction processes for CO oxidation on the BC3 sheet are comparably analysed through different reaction mechanisms, which include the Eley–Rideal (ER), Langmuir–Hinshelwood (LH) and termolecular Eley–Rideal (TER). In the CO oxidation reactions, the decomposition of O2 molecule as the starting state (0.40?eV) is an energetically more favourable process than those of other processes, the Eley–Rideal (ER) reactions (2Oads+2CO→CO2) are more prone to take place with lower energy barriers (3 sheet. These results provide an important guidance on exploring the highly efficiency metal-free catalyst for CO oxidation.  相似文献   

9.
Li Wang  Na Wang  Hongqing He 《Molecular physics》2014,112(11):1600-1607
The reaction mechanisms of methylhydrazine (CH3NHNH2) with O(3P) and O(1D) atoms have been explored theoretically at the MPW1K/6-311+G(d,p), MP2/6-311+G(d,p), MCG3-MPWPW91 (single-point), and CCSD(T)/cc-pVTZ (single-point) levels. The triplet potential energy surface for the reaction of CH3NHNH2 with O(3P) includes seven stable isomers and eight transition states. When the O(3P) atom approaches CH3NHNH2, the heavy atoms, namely N and C atoms, are the favourable combining points. O(3P) atom attacking the middle-N atom in CH3NHNH2 results in the formation of an energy-rich isomer (CH3NHONH2) followed by migration of O(3P) atom from middle-N atom to middle-H atom leading to the product P6 (CH3NNH2+OH), which is one of the most favourable routes. The estimated major product CH3NNH2 is consistent with the experimental measurements. Reaction of O(1D) + CH3NHNH2 presents different features as compared with O(3P) + CH3NHNH2. O(1D) atom will first insert into C–H2, N1–H4, and N2–H5 bonds barrierlessly to form the three adducts, respectively. There are two most favourable paths for O(1D) + CH3NHNH2. One is that the C–N bond cleavage accompanied by a concerted H shift from O atom to N atom (mid-N) leads to the product PI (CH2O + NH2NH2), and the other is that the N–N bond rupture along with a concerted H shift from O to N (end-N) forms PIV (CH3NH2 + HNO). The similarities and discrepancies between two reactions are discussed.  相似文献   

10.
Twenty-seven new far-infrared laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically-pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2-m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

11.
Hao Cui  Jun Zhang  Ju Tang 《Molecular physics》2018,116(13):1749-1755
Metal nanocluster decorated single-walled carbon nanotubes (SWCNT) with improved adsorption behaviour towards gaseous molecules compared with intrinsic ones, have been widely accepted as a workable media for gas interaction due to their strong catalysis. In this work, Pd4 cluster is determined as a catalytic centre to theoretically study the adsorption property of Pd4-decorated SWCNT upon SF6 decomposed species. Results indicate that Pd4-SWCNT possessing good responses and sensitivities towards three composed species of SF6 could realise selective detection for them according to the different conductivity changes resulting from the varying adsorption ability. The response of Pd4-SWCNT upon three molecules in order is SOF2 > H2S > SO2, and the conductivity of the proposed material is about to increase in SOF2 and H2S systems, while declining in SO2 system. Such conclusions would be helpful for experimentalists to explore novel SWCNT-based sensors in evaluating the operating state of SF6 insulation devices.  相似文献   

12.
Seeking environmentally friendly gas-insulated medium has become a research hotspot in recent years. At present, C3F7CN (Heptafluoro-iso-butyronitrile) is considered to be a potential SF6 environment-friendly alternative gas and some achievements have been made in the study of its insulation and decomposition characteristics, but there are few reports on the compatibility between its characteristic decomposition products and materials. The investigation of compatibility between gas-insulated medium and material is an important part of evaluating its comprehensive performance. In this paper, we investigated the interaction between C2F5CN, CF3CN, COF2 and CF4 with the aluminium widely used in electrical equipment. It was found that the interaction between C2F5CN, CF3CN and Al (1 1 1) surface is strong. There are obvious charge transfer and electron orbital overlap between the C atom, N atom in CN group and Al (1 1 1). The interaction between COF2, CF4 and Al (1 1 1) surface is weak and van der Waal’s forces play the major role. Relevant results reveal the characteristics of C3F7CN decomposition products and provide theoretical guidance for evaluating the material compatibility between C3F7CN decomposition products and aluminium.  相似文献   

13.
利用G3和CBS-QB3的理论方法研究CF3OH分子裂解成FCFO和HF,并考虑大气中双分子和氨气对CF3OH分子裂解的催化作用. 理论计算表明:由于在G3的理论水平下,计算的能垒为188.52 kJ/mol,所以CF3OH分子在大气条件下不可能发生单分子裂解;当氨气和双分子水被加入时,能垒都被降到25.08 kJ/mol,起了强的催化作用. 除此之外,应用过渡态理论对速率常数进行了计算,计算结果表明:氨气催化CF3OH分子的速率常数是单分子和双分子催化CF3OH分子裂解速率常数的109和105倍. 考虑到大气中这些物质的浓度,计算结果预测了氨气催化CF3OH分子裂解在大气中起到重要的作用.  相似文献   

14.
Twenty-seven new FIR, far-infrared, laser lines from the isotopomers of methanol: 12CD3OH, 12CH3OD, and 12CH2DOH, were obtained by optically pumping the molecules with an efficient cw CO2 laser. The CO2 laser provided pumping from regular, sequence, and hot-band CO2 laser transitions. The 2 m long far-infrared cavity was a metal-dielectric waveguide closed by two, flat end mirrors. Several short-wavelength (below 100 m) lines were observed. The frequencies of 28 laser lines observed in this cavity (including new lines and already known lines) were measured with a fractional uncertainty limited by the fractional resetability of the far-infrared laser cavity, of 2 parts in 107.  相似文献   

15.
Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.  相似文献   

16.
The ferrodistortive phase transition in the bis-tetramethylammonium tetrabromide crystals below room temperature is studied within the framework of the Landau theory. The specific heats of [N(CH3)4]2MnBr4 and [N(CH3)4]2ZnBr4 are correctly described down to 40°C below the transition temperature. The phenomenological parameters are determined from calorimetric results, elastic constants and thermal expansion data. Using these coefficients, the monoclinic angle in the ferrodistortive phases is obtained. The anharmonic quantities, such as the isothermal compressibility, calculated from the specific heat data, are in good agreement with the values derived from the elastic measurements.  相似文献   

17.
郭琳娜  王育华 《物理学报》2011,60(2):27803-027803
采用化学共沉淀法制备了系列Y1.98-2xYb2x Er0.02SiO5(0.00≤x≤0.15)以及Y1.736Yb0.24Er0.02Tm0.004SiO5上转换发光材料,比较了室温下Y1.98-2xYb2x Er0.02 SiO5 (x=0.00,0.08)样品在400—1600 nm范围内的吸收光谱,测量了所有样品在976 nm OPO激光器激发下的上转换发射光谱,以及Er3+离子4S3/2(4F9/2)→4I15/2,Tm3+离子1G43H6荧光衰减曲线和不同激发功率下的上转换蓝光发射强度,从而分析讨论了Er3+,Tm3+在Y2SiO5中的上转换发光机理.研究结果表明:在1250 ℃相对较低的温度下合成了X2型单斜晶系Y2SiO5 ∶Ln3+(Ln3+=Er3+,Yb3+,Tm3+),Yb3+的敏化显著增强了样品在976 nm附近的吸收能力,并大幅度加宽了该处的吸收带.分析上转换发射光谱发现:上转换绿光和红光强度都随着Yb3+浓度的增加先增强后减弱,但红光的猝灭浓度较高,归因于Er3+→Yb3+反向能量传递ETU4和Yb3+→Er3+正向能量传递ETU3过程的发生;上转换蓝光发射是三光子吸收过程,是通过Yb3+,Tm3+之间三次声子辅助的能量转移方式实现的. 关键词: 上转换 共沉淀 2SiO5∶Er3+')" href="#">Y2SiO5∶Er3+ 3+')" href="#">Yb3+ 3+')" href="#">Tm3+  相似文献   

18.
Co掺杂BiFeO3的第一性原理研究   总被引:1,自引:0,他引:1       下载免费PDF全文
张晖  刘拥军  潘丽华  张瑜 《物理学报》2009,58(10):7141-7146
采用密度泛函理论结合投影缀加波(PAW)方法,研究了具有钙钛矿结构的BiFeO3材料及对BiFeO3进行B位Co元素替代掺杂得到的BiFe075Co025O3材料的磁结构、电子结构、能带结构.结果表明:Co的掺入不破坏原有的钙钛矿结构,对材料铁电性影响不大;掺杂导致原有的G型反铁磁序发生变化,形成了亚铁磁序的磁结构,材料的铁磁性有了很大提高;然而,Co杂质的掺入使材料的绝缘性有所减弱. 关键词: 第一性原理计算 3')" href="#">Co掺杂BiFeO3 铁磁性  相似文献   

19.
In agreement with previous studies, the ground state of ClO4 has been confirmed to be X2B1. Vertical excitation energies and oscillator strengths were calculated by MRCI methods for doublet and quartet states of ClO4. The highest oscillator strength was found for 12A1 at 2.95 eV. This state has been identified as the upper state seen by Kopitzky and co-workers in the absorption spectrum of ClO4. Two higher states, 22A1 and 32A1, at 4.19 and 8.12 eV, respectively, also have relatively high oscillator strengths. Rydberg states start at about 9.5 eV. Geometry optimizations were performed by DFT and CCSD(T) methods. After extensive testing, the B3LYP density functional, together with the 6-311 + G(3df) basis set were chosen for calculations. Optimized geometries of seven excited states were obtained. The adiabatic excitation energy of 12A1 (2.40 eV) agrees closely with the observed band origin at 2.46 eV. Three excited states have one or two imaginary vibrational modes. Electron affinity and heat of formation of ClO4 agree with literature values. None of the quartet states was found to be stable.  相似文献   

20.
In the present study, SF5+ and C60+ were used as primary ions for sputtering and Bi3+ was used as primary ions for analysis. The depth profiling procedure was utilized to make 3D images of the chemistry of single cultured cells and tissue samples of intact intestinal epithelium.The results show sputtering of organic material from cells and tissue with both SF5+ and C60+ sources. Cholesterol fragments were found in the superficial layers when sputtering with C60+. Spectra were collected revealing the change in yield along the z-axis of the sample. 3D images of the localization of Na, K, phosphocholine and cholesterol were constructed with both ion sources for single cell cultures and the mouse intestine.Cryostate sections of mouse intestine were analysed in 2D and the results were compared with the 3D image of the intestine. The localization of cholesterol and phosphocholine was found to be similar in cryostate sections analysed in two dimensions and the sputtered, freeze-dried intestine analysed in 3D. The comparison of 2D and 3D images suggest that the phosphocholine signal faded with C60+ sputtering. In conclusion, both C60+ and SF5+ can be used as primary ion sources for sputtering of organic material from cells and tissues. Consecutive analysis with a Bi3+ source can be used to obtain image stacks that could be used for reconstruction of 3D images.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号