首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of the traps are investigated on the dynamics of two coupled Bose-Einstein condensates, and the atom population transfer between the two condensates is discussed. It is found that the traps and the initial condition determine the switching and self-trapping effects on the atom population imbalance. There are the critical potential amplitude and the critical potential width, by which the oscillation manner of the population transferring ratio can be analyzed as time changes.  相似文献   

2.
We study the quantum coherent tunneling dynamics of two weakly coupled atomic-molecular Bose-Einstein condensates (AMBEC). A weak link is supposed to be provided by a double-well trap. The regions of parameters where the macroscopic quantum localization of the relative atomic population occurs are revealed. The different dynamical regimes are found depending on the value of nonlinearity, namely, coupled oscillations of population imbalance of atomic and molecular condensate, including irregular oscillations regions, and macroscopic quantum self trapping regimes. Quantum means and quadrature variances are calculated for population of atomic and molecular condensates and the possibility of quadrature squeezing is shown via stochastic simulations within P-positive phase space representation method. Linear tunnel coupling between two AMBEC leads to correlations in quantum statistics.Received: 22 May 2004, Published online: 10 August 2004PACS: 03.75.-b Matter waves - 03.75.Gg Entanglement and decoherence in Bose-Einstein condensates - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 05.30.Jp Boson systems  相似文献   

3.
Tunneling dynamics of multi-atomic molecules between any two multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated. It is indicated that the tunneling in the two Bose-Einstein condensates depends not only on the inter-molecular nonlinear interactions and the initial number of molecule in these condensates, but also on the tunneling coupling between them. It is discovered that besides oscillating tunneling current between the multi-atomic molecular condensates, the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence caused by non-condensate molecule on the tunneling dynamics is studied. It is shown that de-coherence suppresses the multi-atomic molecular tunneling.  相似文献   

4.
Tunneling dynamics of multi-atomic molecules between atomic and multi-atomic molecular Bose-Einstein condensates with Feshbach resonance is investigated.It is indicated that the tunneling in the two Bose-Einstein condensates depends on not only the inter-atomic-molecular nonlinear interactions and the initial number of atoms in these condensates,but also the tunneling coupling between the atomic condensate and the multi-atomic molecular condensate.It is discovered that besides oscillating tunneling current between the atomic condensate and the multi-atomic molecular condensate,the nonlinear multi-atomic molecular tunneling dynamics sustains a self-locked population imbalance:a macroscopic quantum self-trapping effect.The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied.It is shown that de-coherence suppresses the multi-atomic molecular tunneling.Moreover,the conception of the molecular Bose-Einstein condensate,which is different from the conventional single-atomic Bose-Einstein condensate,is specially emphasized in this paper.  相似文献   

5.
邱建国 《中国物理快报》2006,23(6):1387-1390
We present an approximate analytical solution to the population imbalance of two-component Bose-Einstein condensate with the coupling drive. The dependence of the time evolution of self-trapping upon the radio frequency wave, the Rabi coupling frequency, the initial atom number and relative phase between two condensates are investigated. The lower radio frequency wave, the same atom number and initial relative phase between condensates are beneficial to observe the self-trapping.  相似文献   

6.
The theoretical investigation of quantum coherent atomic oscillations between two coupled Bose-Einstein condensates(BECs) is studied. We apply the inseparable wave function of time-space to describe two trapped BECs in a double-well magnetic trap. According to Thomas-Fermi approximation, dynamical equations of the interwell phase difference and population imbalance are obtained. Using numerical method, coherent atomic tunneling and macroscopic quantum self-trapping(MQST) effect are investigated.  相似文献   

7.
理论上考察了两耦合玻色-爱因斯坦凝聚体间的相干原子振荡,我们用时空不能完全分离的波函数去描述囚禁在双磁阱中的玻色-爱因斯坦凝聚体,根据托马斯-费米近似,得到两凝聚体的相位差和布局数随时间的演化方程,应用数值计算的方法,考察了相干原子遂穿和宏观量子自囚禁效应.这些研究结果和采用双模时空分离波函数近似法得到的结果进行了比较.  相似文献   

8.
Motivated by the recent experiment at ENS [V. Bretin, S. Stock, Y. Seurin and, J. Dalibard, Phys. Rev. Lett. 92, 050403 (2004)], we study a rotating (non-)interacting atomic Bose-Einstein condensate confined in a harmonic-plus-Gaussian laser trap potential. By adjusting the amplitude of the Gaussian laser potential, one can make quadratic-plus-quartic potential, purely quartic potential, and quartic-minus-quadratic potential. We show that an interacting Bose-Einstein condensate confined in a harmonic-plus-Gaussian laser trap breaks the rotational symmetry of the Hamiltonian when rotational frequency is greater than one-half of the lowest energy surface mode frequency. We also show that by increasing the amplitude of the Gaussian laser trap, a vortex appears in a slowly rotating Bose-Einstein condensate. Moreover, one can also create a vortex in a slowly rotating non-interacting Bose-Einstein condensate confined in harmonic-plus-Gaussian laser potential.Received: 24 June 2004, Published online: 24 August 2004PACS: 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 05.30.Jp Boson systems  相似文献   

9.
By using of the invariant theory, we have studied phase of a Bose-Einstein condensate in a double-well potential modulated periodically in time when the on-site interaction energy of a single pair of bosons occupying the same well equals the collision energy between two condensates, the dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained in the case of the cyclical evolution. PACS:03.65.Vf; 03.75.Mn  相似文献   

10.
We study tunneling dynamics of atomic group in two-species molecular Bose-Einstein condensates. It is shown that the tunneling of the atom group depends on not only the tunneling coupling constant between the atomic pair molecular condensate and the three-atomic group molecular condensate, but also the inter-molecular nonlinear interactions and the initial number of atoms in these condensates. It is discovered that besides oscillating tunneling current between the atomic pair molecular condensate and the three-atomic group molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect.  相似文献   

11.
We review our recent theoretical advances in the dynamics of Bose-Einstein condensates with tunable interactions using Feshbach resonance and external potential. A set of analytic and numerical methods for Gross-Pitaevskii equations are developed to study the nonlinear dynamics of Bose-Einstein condensates. Analytically, we present the integrable conditions for the Gross-Pitaevskii equations with tunable interactions and external potential, and obtain a family of exact analytical solutions for one- and two-component Bose-Einstein condensates in one and two-dimensional cases. Then we apply these models to investigate the dynamics of solitons and collisions between two solitons. Numerically, the stability of the analytic exact solutions are checked and the phenomena, such as the dynamics and modulation of the ring dark soliton and vector-soliton, soliton conversion via Feshbach resonance, quantized soliton and vortex in quasi-two-dimensional are also investigated. Both the exact and numerical solutions show that the dynamics of Bose-Einstein condensates can be effectively controlled by the Feshbach resonance and external potential, which offer a good opportunity for manipulation of atomic matter waves and nonlinear excitations in Bose-Einstein condensates.  相似文献   

12.
We propose a scheme to generate maximally entangled states of two distant Bose-Einstein condensates, which are trapped in different potential wells of a one-dimensional optical lattice. We show how such maximally entangled state can be used to test the Bell inequality and realize quantum teleportation of a Bose-Einstein condensate state. The scheme proposed here is based on the interference of Bose-Einstein condensates leaking out from different potential wells of optical lattice. It is briefly pointed out that this scheme can be extended to generate maximally entangled Greenberger-Horne-Zeilinger (GHZ) states of 2m (m >1) distant Bose-Einstein condensates.  相似文献   

13.
We investigate tunneling dynamics of atomic group consisting of three atoms in Bose-Einstein condensates with Feshbach resonance. It is shown that the tunneling of the atom group depends not only on the inter-atomic nonlinear interactions and the initial number of atoms in these condensates, but also on the tunneling coupling between the atomic condensate and the three-atomic molecular condensate. It is found that besides oscillating tunneling current between the atomic condensate and the molecular condensate, the nonlinear atomic group tunneling dynamics sustains a self-maintained population imbalance: a macroscopic quantum self-trapping effect. The influence of de-coherence caused by non-condensate atoms on the tunneling dynamics is studied. It is indicated that de-coherence suppresses the atomic group tunneling.  相似文献   

14.
《中国物理 B》2021,30(10):106701-106701
We consider two-dimensional spinor F = 1 Bose–Einstein condensates in two types of radially-periodic potentials with spin–orbit coupling, i.e., spin-independent and spin-dependent radially-periodic potentials. For the Bose–Einstein condensates in a spin-independent radially-periodic potential, the density of each component exhibits the periodic density modulation along the azimuthal direction, which realizes the necklacelike state in the ferromagnetic Bose–Einstein condensates. As the spin-exchange interaction increases, the necklacelike state gradually transition to the plane wave phase for the antiferromagnetic Bose–Einstein condensates with larger spin–orbit coupling. The competition of the spin-dependent radially-periodic potential, spin–orbit coupling, and spin-exchange interaction gives rise to the exotic ground-state phases when the Bose–Einstein condensates in a spin-dependent radially-periodic potential.  相似文献   

15.
张波  王登龙  佘彦超  张蔚曦 《物理学报》2013,62(11):110501-110501
利用多重尺度法, 解析地研究了方势阱中玻色-爱因斯坦凝聚体的孤子动力学行为. 结果表明, 方势阱对凝聚体中的孤子动力学有重要的影响. 进入方势阱时孤子作加速运动, 逃逸出势阱时孤子作减速运动; 且随着势阱深度的增加, 孤子的速度增加、幅度增加、宽度减小. 这为实验操控孤子的动力学行为提供一定的参考价值. 关键词: 玻色-爱因斯坦凝聚体 孤子 方势阱  相似文献   

16.
Interaction between two coupled Bose-Einstein condensates (BECs) is investigated by the variational approach in two finite traps, and the effects of the spacing between the two traps on dynamics of the two BECs are analyzed. The spacing determines the stable condition of stationary states, affects the existence condition of each BEC, and changes the switching and self-trapping effects on the two BECs. The dynamic mechanism is demonstrated by performing a coordinate of classical particle moving in an effective potential field, and confirmed by the evolution of the atom population transferring ratio.  相似文献   

17.
Using the axially-symmetric time-dependent Gross-Pitaevskii equation we study the phase coherence in a repulsive Bose-Einstein condensate (BEC) trapped by a harmonic and an one-dimensional optical lattice potential to describe the experiment by Cataliotti et al. on atomic Josephson oscillation [Science 293, 843 (2001)]. The phase coherence is maintained after the BEC is set into oscillation by a small displacement of the magnetic trap along the optical lattice. The phase coherence in the presence of oscillating neutral current across an array of Josephson junctions manifests in an interference pattern formed upon free expansion of the BEC. The numerical response of the system to a large displacement of the magnetic trap is a classical transition from a coherent superfluid to an insulator regime and a subsequent destruction of the interference pattern in agreement with the more recent experiment by Cataliotti et al. [New J. Phys. 5, 71 (2003)].Received: 20 March 2003, Published online: 30 July 2003PACS: 03.75.-b Matter waves - 03.75.Lm Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices and topological excitations - 03.75.Kk Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow  相似文献   

18.
方见树  廖湘萍 《中国物理 B》2011,20(4):40310-040310
Using the direct perturbation technique,this paper obtains a general perturbed solution of the Bose-Einstein condensates trapped in one-dimensional tilted optical lattice potential. We also gave out two necessary and sufficient conditions for boundedness of the perturbed solution. Theoretical analytical results and the corresponding numerical results show that the perturbed solution of the Bose-Einstein condensate system is unbounded in general and indicate that the Bose-Einstein condensates are Lyapunov-unstable. However,when the conditions for boundedness of the perturbed solution are satisfied,then the Bose-Einstein condensates are Lyapunov-stable.  相似文献   

19.
Motivated by recent experiments on rotating Bose-Einstein condensates, we investigate a rotating, polarized Fermi gas trapped in an anharmonic potential. We apply a semiclassical expansion of the density of states in order to determine how the thermodynamic properties depend on the rotation frequency. The accuracy of the semiclassical approximation is tested and shown to be sufficient for describing typical experiments. At zero temperature, rotating the gas above a given frequency ΩDO leads to a ‘donut’-shaped cloud which is analogous to the hole found in two-dimensional Bose-Einstein condensates. The free expansion of the gas after suddenly turning off the trap is considered and characterized by the time and rotation frequency dependence of the aspect ratio. Temperature effects are also taken into account and both low- and high-temperature expansions are presented for the relevant thermodynamical quantities. In the high-temperature regime a virial theorem approach is used to study the delicate interplay between rotation and anharmonicity.  相似文献   

20.
We provide a simple physical picture of the loss of coherence between two coherently split one-dimensional Bose-Einstein condensates. The source of the dephasing is identified with nonlinear corrections to the elementary excitation energies in either of the two independent condensates. We retrieve the result by Burkov, Lukin and Demler [Phys. Rev. Lett. 98, 200404 (2007)] on the subexponential decay of the coherence ∝exp [-(t/t0)2/3] for the large time t, however, the scaling of t0 differs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号