首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
We establish the global well-posedness of the Navier–Stokes- ${\bar \omega}$ model with initial data ${u_0 \in H^{1-s}(\mathbb{R}^3)}$ with ${0 < s < \frac{1}{2}}$ which improves the existence results in Fan and Zhou (Appl Math Lett 24:1915–1918, 2011), Layton et al. (Commun Pure Appl Anal 10:1763–1777, 2011) where the initial data are required belonging to ${H^2(\mathbb{R}^3)}$ . We also obtain the similar results for a family of Navier–Stokes-α-like and magnetohydrodynamic-α models.  相似文献   

2.
The m-accretivity and m-sectoriality of the minimal and maximal realizations of second-order elliptic operators of the form ${Au=-{\rm div}(a \nabla u)+F\cdot \nabla u +Vu}$ in ${L^p(\mathbb{R}^N)}$ are shown, where the coefficients a, F and V are unbounded. The result may be regarded as an endpoint assertion of the previous result in Sobajima (J Evol Equ 12:957–971, 2012) and an improvement of that in Metafune et al. (Forum Math 22:583–601, 2010). Moreover, an L p -generalization of Kato’s self-adjoint problem in Kato (1981, Appendix 2) is discussed. The proof is based on Sobajima (J Evol Equ 12:957–971, 2012). As examples, the operators ${-\Delta \pm |x|^{\beta-1}x \cdot \nabla +c|x|^{\gamma}}$ are also dealt with, which are mentioned in Metafune et al. (Forum Math 22:583–601, 2010).  相似文献   

3.
In this paper, we investigate the properties of mappings in harmonic Bergman spaces. First, we discuss the coefficient estimate, the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit disk $\mathbb D $ of $\mathbb C $ . Our results are generalizations of the corresponding ones in Chen et al. (Proc Am Math Soc 128:3231–3240, 2000), Chen et al. (J Math Anal Appl 373:102–110, 2011), Chen et al. (Ann Acad Sci Fenn Math 36:567–576, 2011). Then, we study the Schwarz-Pick Lemma and the Landau-Bloch theorem for mappings in harmonic Bergman spaces in the unit ball $\mathbb B ^{n}$ of $\mathbb C ^{n}$ . The obtained results are generalizations of the corresponding ones in Chen and Gauthier (Proc Am Math Soc 139:583–595 2011). At last, we get a characterization for mappings in harmonic Bergman spaces on $\mathbb B ^{n}$ in terms of their complex gradients.  相似文献   

4.
We study a class of quadratic p-ary functions ${{\mathcal{F}}_{p,n}}$ from ${\mathbb{F}_{p^n}}$ to ${\mathbb{F}_p, p \geq 2}$ , which are well-known to have plateaued Walsh spectrum; i.e., for each ${b \in \mathbb{F}_{p^n}}$ the Walsh transform ${\hat{f}(b)}$ satisfies ${|\hat{f}(b)|^2 \in \{ 0, p^{(n+s)}\}}$ for some integer 0 ≤ s ≤ n ? 1. For various types of integers n, we determine possible values of s, construct ${{\mathcal{F}}_{p,n}}$ with prescribed spectrum, and present enumeration results. Our work generalizes some of the earlier results, in characteristic two, of Khoo et. al. (Des Codes Cryptogr, 38, 279–295, 2006) and Charpin et al. (IEEE Trans Inf Theory 51, 4286–4298, 2005) on semi-bent functions, and of Fitzgerald (Finite Fields Appl 15, 69–81, 2009) on quadratic forms.  相似文献   

5.
We use the Pieri and Giambelli formulas of Buch et al. (Invent Math 178:345–405, 2009; J Reine Angew, 2013) and the calculus of raising operators developed in Buch et al. (A Giambelli formula for isotropic Grassmannians, arXiv:0811.2781, 2008) and Tamvakis (J Reine Angew Math 652, 207–244, 2011) to prove a tableau formula for the eta polynomials of Buch et al. (J Reine Angew, 2013) and the Stanley symmetric functions which correspond to Grassmannian elements of the Weyl group $\widetilde{W}_n$ of type $\text {D}_n$ . We define the skew elements of $\widetilde{W}_n$ and exhibit a bijection between the set of reduced words for any skew $w\in \widetilde{W}_n$ and a set of certain standard typed tableaux on a skew shape $\lambda /\mu $ associated to $w$ .  相似文献   

6.
Let $\mathfrak{g}$ be a complex semisimple Lie algebra, $\mathfrak{b}$ a Borel subalgebra, and $\mathfrak{h}\subset\mathfrak{b}$ a Cartan subalgebra. Let V be a finite dimensional simple $U(\mathfrak{g})$ module. Based on a principal s-triple (e,h,f) and following work of Kostant, Brylinski (J Amer Math Soc 2(3):517–533, 1989) defined a filtration $\mathcal{F}_e$ for all weight subspaces V μ of V and calculated the dimensions of the graded subspaces for μ dominant. In Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) these dimensions were calculated for all μ. Let δM(0) be the finite dual of the Verma module of highest weight 0. It identifies with the global functions on a Weyl group translate of the open Bruhat cell and so inherits a natural degree filtration. On the other hand, up to an appropriate shift of weights, there is a unique $U(\mathfrak{b})$ module embedding of V into δM(0) and so the degree filtration induces a further filtration $\mathcal{F}$ on each weight subspace V μ . A casual reading of Joseph et al. (J Amer Math Soc 13(4):945–970, 2000) might lead one to believe that $\mathcal{F}$ and $\mathcal{F}_e$ coincide. However this is quite false. Rather one should view $\mathcal{F}_e$ as coming from a left action of $U(\mathfrak{n})$ and then there is a second (Brylinski-Kostant) filtration $\mathcal{F}'_e$ coming from a right action. It is $\mathcal{F}'_e$ which may coincide with $\mathcal{F}$ . In this paper the above claim is made precise. First it is noted that $\mathcal{F}$ is itself not canonical, but depends on a choice of variables. Then it is shown that a particular choice can be made to ensure that $\mathcal{F}=\mathcal{F}'_e$ . An explicit form for the unique left $U(\mathfrak{b})$ module embedding $V\hookrightarrow\delta M(0)$ is given using the right action of $U(\mathfrak{n})$ . This is used to give a purely algebraic proof of Brylinski’s main result in Brylinski (J Amer Math Soc 2(3):517–533, 1989) which is much simpler than Joseph et al. (J Amer Math Soc 13(4):945–970, 2000). It is noted that the dimensions of the graded subspaces of $\rm{gr}_{\mathcal{F}_e} V_{\!\mu}$ and $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ can be very different. Their interrelation may involve the Kashiwara involution. Indeed a combinatorial formula for multiplicities in tensor products involving crystal bases and the Kashiwara involution is recovered. Though the dimensions for the graded subspaces of $\rm{gr}_{\mathcal{F}'_e} V_{\!\mu}$ are determined by polynomial degree, their values remain unknown.  相似文献   

7.
Let $G$ be a connected semisimple algebraic group with Lie algebra $\mathfrak{g }$ and $P$ a parabolic subgroup of $G$ with $\mathrm{Lie\, }P=\mathfrak{p }$ . The parabolic contraction $\mathfrak{q }$ of $\mathfrak{g }$ is the semi-direct product of $\mathfrak{p }$ and a $\mathfrak{p }$ -module $\mathfrak{g }/\mathfrak{p }$ regarded as an abelian ideal. We are interested in the polynomial invariants of the adjoint and coadjoint representations of $\mathfrak{q }$ . In the adjoint case, the algebra of invariants is easily described and it turns out to be a graded polynomial algebra. The coadjoint case is more complicated. Here we found a connection between symmetric invariants of $\mathfrak{q }$ and symmetric invariants of centralisers $\mathfrak{g }_e\subset \mathfrak{g }$ , where $e\in \mathfrak{g }$ is a Richardson element with polarisation $\mathfrak{p }$ . Using this connection and results of Panyushev et al. (J Algebra 313:343–391, 2007), we prove that the algebra of symmetric invariants of $\mathfrak{q }$ is free for all parabolic subalgebras in types $\mathbf A$ and $\mathbf C$ and some parabolics in type $\mathbf B$ . This technique also applies to the minimal parabolic subalgebras in all types. For $\mathfrak{p }=\mathfrak{b }$ , a Borel subalgebra of $\mathfrak{g }$ , one gets a contraction of $\mathfrak{g }$ recently introduced by Feigin (Selecta Math 18:513–537, 2012) and studied from invariant-theoretic point of view in our previous paper (Panyushev and Yakimova in Ann Inst Fourier 62(6):2053–2068, 2012).  相似文献   

8.
The notions of the parallel sum, the parallel difference, and the complement of two nonnegative sesquilinear forms were introduced and studied by Hassi, Sebestyé and de Snoo in Hassi et al. (Oper Theory Adv Appl 198:211–227, 2010) and Hassi et al. (J Funct Anal 257(12):3858–3894, 2009). In this paper we continue these investigations. The Galois correspondence induced by the map ${\mathfrak{m} \mapsto \mathfrak{m}_\mathfrak{t}}$ (where ${\mathfrak{m}_\mathfrak{t}}$ denotes the ${\mathfrak{t}}$ -complement of ${\mathfrak{m}}$ ) is also studied. Inspired by the work of Eriksson and Leutwiler Eriksson and Leutwiler (Math Ann 274:301–317, 1986), we introduce the notion of quasi-unit for nonnegative sesquilinear forms. The quasi-units are characterized by means of the complement and the disjoint part. It is also shown that the ${{\mathfrak{t}}}$ -quasi-units coincide with the extreme points of the convex set ${\mathfrak{z}: 0 \leq \mathfrak{z} \leq \mathfrak{t}\}}$ .  相似文献   

9.
We obtain a formula for the $n$ -dimensional distributions of the $\text{ Airy}_1$ process in terms of a Fredholm determinant on $L^2(\mathbb{R })$ , as opposed to the standard formula which involves extended kernels, on $L^2(\{1,\dots ,n\}\times \mathbb{R })$ . The formula is analogous to an earlier formula of Prähofer and Spohn (J Stat Phys 108(5–6):1071–1106, 2002) for the $\text{ Airy}_2$ process. Using this formula we are able to prove that the $\text{ Airy}_1$ process is Hölder continuous with exponent $\frac{1}{2}$ —and that it fluctuates locally like a Brownian motion. We also explain how the same methods can be used to obtain the analogous results for the $\text{ Airy}_2$ process. As a consequence of these two results, we derive a formula for the continuum statistics of the $\text{ Airy}_1$ process, analogous to that obtained in Corwin et al. (Commun Math Phys 2011, to appear) for the $\text{ Airy}_2$ process.  相似文献   

10.
Let $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ be the empirical process associated to an ? d -valued stationary process (X i ) i≥0. In the present paper, we introduce very general conditions for weak convergence of $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ , which only involve properties of processes (f(X i )) i≥0 for a restricted class of functions $f\in\mathcal{G}$ . Our results significantly improve those of Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011) and provide new applications. The central interest in our approach is that it does not need the indicator functions which define the empirical process $(U_{n}(t))_{t\in\mathbb{R}^{d}}$ to belong to the class  $\mathcal{G}$ . This is particularly useful when dealing with data arising from dynamical systems or functionals of Markov chains. In the proofs we make use of a new application of a chaining argument and generalize ideas first introduced in Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011). Finally we will show how our general conditions apply in the case of multiple mixing processes of polynomial decrease and causal functions of independent and identically distributed processes, which could not be treated by the preceding results in Dehling et al. (Stoch. Proc. Appl. 119(10):3699–3718, 2009) and Dehling and Durieu (Stoch. Proc. Appl. 121(5):1076–1096, 2011).  相似文献   

11.
Let $ \mathcal{A} $ be a nonempty family of functions from $ \mathbb{R} $ to $ \mathbb{R} $ . A function $ f:\mathbb{R}\to \mathbb{R} $ is said to be strongly countably $ \mathcal{A} $ -function if there is a sequence (f n ) of functions from $ \mathcal{A} $ such that $ \mathrm{Gr}(f)\subset {\cup_n}\mathrm{Gr}\left( {{f_n}} \right) $ (Gr(f) denotes the graph of f). If $ \mathcal{A} $ is the family of all continuous functions, the strongly countable $ \mathcal{A} $ -functions are called strongly countably continuous and were investigated in [Z. Grande and A. Fatz-Grupka, On countably continuous functions, Tatra Mt. Math. Publ., 28:57–63, 2004], [G. Horbaczewska, On strongly countably continuous functions, Tatra Mt. Math. Publ., 42:81–86, 2009], and [T.A. Natkaniec, On additive countably continuous functions, Publ. Math., 79(1–2):1–6, 2011]. In this article, we prove that the families $ \mathcal{A}\left( \mathbb{R} \right) $ of all strongly countably $ \mathcal{A} $ -functions are closed with respect to some operations in dependence of analogous properties of the families $ \mathcal{A} $ , and, in particular, we show some properties of strongly countably differentiable functions, strongly countably approximately continuous functions, and strongly countably quasi-continuous functions.  相似文献   

12.
A formulation of the Carleson embedding theorem in the multilinear setting is proved which allows obtaining a multilinear analogue of Sawyer’s two weight theorem for the multisublinear maximal function $\mathcal{M }$ introduced by Lerner et al. (Adv Math 220:1222–1264, 2009). A multilinear version of the $B_p$ theorem from Hytönen and Pérez (Anal PDE, 2013) is also obtained and a mixed $A_{\overrightarrow{ P}}-W_{\overrightarrow{ P}}^{\infty }$ bound for $\mathcal{M }$ is proved as well.  相似文献   

13.
Let $G$ be a semi-simple simply connected group over $\mathbb {C}$ . Following Gerasimov et al. (Comm Math Phys 294:97–119, 2010) we use the $q$ -Toda integrable system obtained by quantum group version of the Kostant–Whittaker reduction (cf. Etingof in Am Math Soc Trans Ser 2:9–25, 1999, Sevostyanov in Commun Math Phys 204:1–16, 1999) to define the notion of $q$ -Whittaker functions $\varPsi _{\check{\lambda }}(q,z)$ . This is a family of invariant polynomials on the maximal torus $T\subset G$ (here $z\in T$ ) depending on a dominant weight $\check{\lambda }$ of $G$ whose coefficients are rational functions in a variable $q\in \mathbb {C}^*$ . For a conjecturally the same (but a priori different) definition of the $q$ -Toda system these functions were studied by Ion (Duke Math J 116:1–16, 2003) and by Cherednik (Int Math Res Notices 20:3793–3842, 2009) [we shall denote the $q$ -Whittaker functions from Cherednik (Int Math Res Notices 20:3793–3842, 2009) by $\varPsi '_{\check{\lambda }}(q,z)$ ]. For $G=SL(N)$ these functions were extensively studied in Gerasimov et al. (Comm Math Phys 294:97–119, 2010; Comm Math Phys 294:121–143, 2010; Lett Math Phys 97:1–24, 2011). We show that when $G$ is simply laced, the function $\hat{\varPsi }_{\check{\lambda }}(q,z)=\varPsi _{\check{\lambda }}(q,z)\cdot {\prod \nolimits _{i\in I}\prod \nolimits _{r=1}^{\langle \alpha _i,\check{\uplambda }\rangle }(1-q^r)}$ (here $I$ denotes the set of vertices of the Dynkin diagram of $G$ ) is equal to the character of a certain finite-dimensional $G[[{\mathsf {t}}]]\rtimes \mathbb {C}^*$ -module $D(\check{\lambda })$ (the Demazure module). When $G$ is not simply laced a twisted version of the above statement holds. This result is known for $\varPsi _{\check{\lambda }}$ replaced by $\varPsi '_{\check{\lambda }}$ (cf. Sanderson in J Algebraic Combin 11:269–275, 2000 and Ion in Duke Math J 116:1–16, 2003); however our proofs are algebro-geometric [and rely on our previous work (Braverman, Finkelberg in Semi-infinite Schubert varieties and quantum $K$ -theory of flag manifolds, arXiv/1111.2266, 2011)] and thus they are completely different from Sanderson (J Algebraic Combin 11:269–275, 2000) and Ion (Duke Math J 116:1–16, 2003) [in particular, we give an apparently new algebro-geometric interpretation of the modules $D(\check{\lambda })]$ .  相似文献   

14.
We study cohomological induction for a pair $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ , $ \mathfrak{g} $ being an infinitedimensional locally reductive Lie algebra and $ \mathfrak{k} \subset \mathfrak{g} $ being of the form $ \mathfrak{k}_{0} \subset C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ , where $ \mathfrak{k}_{0} \subset \mathfrak{g} $ is a finite-dimensional reductive in $ \mathfrak{g} $ subalgebra and $ C_{\mathfrak{g}} {\left( {\mathfrak{k}_{0} } \right)} $ is the centralizer of $ \mathfrak{k}_{0} $ in $ \mathfrak{g} $ . We prove a general nonvanishing and $ \mathfrak{k} $ -finiteness theorem for the output. This yields, in particular, simple $ {\left( {\mathfrak{g},\mathfrak{k}} \right)} $ -modules of finite type over k which are analogs of the fundamental series of generalized Harish-Chandra modules constructed in [PZ1] and [PZ2]. We study explicit versions of the construction when $ \mathfrak{g} $ is a root-reductive or diagonal locally simple Lie algebra.  相似文献   

15.
We prove that the boundary of $\mathbb{H }$ -perimeter minimizing sets in the Heisenberg group can be approximated by graphs that are intrinsic Lipschitz in the sense of Franchi et al. (J Nonlinear Convex Anal 7(3):423–441, 2006). The Hausdorff measure of the symmetric difference in a ball of graph and boundary is estimated by excess in a larger concentric ball. This result is motivated by a research program on the regularity of $\mathbb{H }$ -perimeter minimizing sets.  相似文献   

16.
Given a Banach space X and one of its compact sets $\mathcal{F}$ , we consider the problem of finding a good n-dimensional space X n ?X which can be used to approximate the elements of $\mathcal{F}$ . The best possible error we can achieve for such an approximation is given by the Kolmogorov width $d_{n}(\mathcal{F})_{X}$ . However, finding the space which gives this performance is typically numerically intractable. Recently, a new greedy strategy for obtaining good spaces was given in the context of the reduced basis method for solving a parametric family of PDEs. The performance of this greedy algorithm was initially analyzed in Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) in the case $X=\mathcal{H}$ is a Hilbert space. The results of Buffa et al. (Modél. Math. Anal. Numér. 46:595–603, 2012) were significantly improved upon in Binev et al. (SIAM J. Math. Anal. 43:1457–1472, 2011). The purpose of the present paper is to give a new analysis of the performance of such greedy algorithms. Our analysis not only gives improved results for the Hilbert space case but can also be applied to the same greedy procedure in general Banach spaces.  相似文献   

17.
Let ${\mathcal{F}}$ be a family of connected graphs. A graph G is said to be ${\mathcal{F}}$ -free if G is H-free for every graph H in ${\mathcal{F}}$ . We study the problem of characterizing the families of graphs ${\mathcal{F}}$ such that every large enough connected ${\mathcal{F}}$ -free graph of even order has a perfect matching. This problems was previously studied in Plummer and Saito (J Graph Theory 50(1):1–12, 2005), Fujita et al. (J Combin Theory Ser B 96(3):315–324, 2006) and Ota et al. (J Graph Theory, 67(3):250–259, 2011), where the authors were able to characterize such graph families ${\mathcal{F}}$ restricted to the cases ${|\mathcal{F}|\leq 1, |\mathcal{F}| \leq 2}$ and ${|\mathcal{F}| \leq 3}$ , respectively. In this paper, we complete the characterization of all the families that satisfy the above mentioned property. Additionally, we show the families that one gets when adding the condition ${|\mathcal{F}| \leq k}$ for some k ≥ 4.  相似文献   

18.
In his thesis, Weisinger (Thesis, 1977) developed a newform theory for elliptic modular Eisenstein series. This newform theory for Eisenstein series was later extended to the Hilbert modular setting by Wiles (Ann. Math. 123(3):407–456, 1986). In this paper, we extend the theory of newforms for Hilbert modular Eisenstein series. In particular, we provide a strong multiplicity-one theorem in which we prove that Hilbert Eisenstein newforms are uniquely determined by their Hecke eigenvalues for any set of primes having Dirichlet density greater than $\frac{1}{2}$ . Additionally, we provide a number of applications of this newform theory. Let denote the space of Hilbert modular Eisenstein series of parallel weight k≥3, level $\mathcal{N}$ and Hecke character Ψ over a totally real field K. For any prime $\mathfrak{q}$ dividing $\mathcal{N}$ , we define an operator $C_{\mathfrak{q}}$ generalizing the Hecke operator $T_{\mathfrak{q}}$ and prove a multiplicity-one theorem for with respect to the algebra generated by the Hecke operators $T_{\mathfrak{p}}$ ( $\mathfrak{p}\nmid\mathcal{N}$ ) and the operators $C_{\mathfrak{q}}$ ( $\mathfrak{q}\mid\mathcal{N}$ ). We conclude by examining the behavior of Hilbert Eisenstein newforms under twists by Hecke characters, proving a number of results having a flavor similar to those of Atkin and Li (Invent. Math. 48(3):221–243, 1978).  相似文献   

19.
In this note, we prove the following generalization of a theorem of Shi and Tam (J Differ Geom 62:79–125, 2002): Let (Ω, g) be an n-dimensional (n ≥ 3) compact Riemannian manifold, spin when n?>?7, with non-negative scalar curvature and mean convex boundary. If every boundary component Σ i has positive scalar curvature and embeds isometrically as a mean convex star-shaped hypersurface ${{\hat \Sigma}_i \subset \mathbb{R}^n}$ , then $$ \int\limits_{\Sigma_i} H \ d \sigma \le \int\limits_{{\hat \Sigma}_i} \hat{H} \ d {\hat \sigma} $$ where H is the mean curvature of Σ i in (Ω, g), ${\hat{H}}$ is the Euclidean mean curvature of ${{\hat \Sigma}_i}$ in ${\mathbb{R}^n}$ , and where d σ and ${d {\hat \sigma}}$ denote the respective volume forms. Moreover, equality holds for some boundary component Σ i if, and only if, (Ω, g) is isometric to a domain in ${\mathbb{R}^n}$ . In the proof, we make use of a foliation of the exterior of the ${\hat \Sigma_i}$ ’s in ${\mathbb{R}^n}$ by the ${\frac{H}{R}}$ -flow studied by Gerhardt (J Differ Geom 32:299–314, 1990) and Urbas (Math Z 205(3):355–372, 1990). We also carefully establish the rigidity statement in low dimensions without the spin assumption that was used in Shi and Tam (J Differ Geom 62:79–125, 2002).  相似文献   

20.
Let A be a commutative ring, and let $\mathfrak{a}$ be a weakly proregular ideal in A. (If A is noetherian then any ideal in it is weakly proregular.) Suppose M is a compact generator of the category of cohomologically $\mathfrak{a}$ -torsion complexes. We prove that the derived double centralizer of M is isomorphic to the $\mathfrak{a}$ -adic completion of A. The proof relies on the MGM equivalence from Porta et al. (Algebr Represent Theor, 2013) and on derived Morita equivalence. Our result extends earlier work of Dwyer et al. (Adv Math 200:357–402, 2006) and Efimov (2010).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号