首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Systems of stochastic ordinary differential equations dependent on a small parameter are studied. The equations are assumed to depend on two time scales: they are stochastic in a fast time t and they are deterministic in a slow time t. The method of analysis is based on a generalization of the Method of Averaging. Mathematical results are given valid for all t for sufficiently small. The mathematical results are applied to several examples of parametrically excited dynamical systems.  相似文献   

2.
The effects of the curvature radius of a cylindrical shell on stress intensity factors are investigated in circumferential (inner and outer) semielliptical surface cracks in a cylindrical shell. What is new in this paper is to have given: (1) The stress intensity factors for surface cracks in a cylindircal shell are determined by photoelastic technique. (2) By a special method photoelastic slices are handled for obtaining a clear caustic curve, and the stress intensity factors for surface cracks in a cylindrical shell are determined by the caustic method. (3) An approximate equation of curvature correction factor Fc is proposed. (4) Effects of the curvature radius R of a cylindrical shell on the stress intensity factors of surface cracks are obtained. The results of this paper are in fair agreement with already existing analytical results. The approximate equation of curvature correction factor Fc can be widely used for engineering purposes.  相似文献   

3.
The rate at which energy is accumulated within a unit volume of material in fatigue is assumed to depend not only on load-time history but also on the specimen size and geometry in addition to material type. A threshold level for the hysteresis strain energy density function accumulated in the material is used for predicting macrocrack growth. This is accomplished by application of the incremental theory of plasticity for each increment of crack growth. The accumulated hysteresis strain energy density factor ΔS to crack growth increment Δa ratio is found to be constant for fixed specimen size and loading, i.e., . Results are obtained for the cylindrical bar specimens with a penny-shaped defect at the center subjected to a constant amplitude and frequency loading. The resistance curves in the ΔS versus Δa plot are parallel lines as specimen size is altered. This information provides a rational means for predicting the influence of specimen size on fatigue lifetime.The results are also compared with those found for geometrically similar plate specimens with line cracks. Cylinder bar specimens of the same material are found to sustain more load cycles prior to catastrophic failure.  相似文献   

4.
A computationally efficient approach that solves for the spatial covariance matrix along the dense particle ensemble-averaged trajectory has been successfully applied to describe turbulent dispersion in swirling flows. The procedure to solve for the spatial covariance matrix is based on turbulence isotropy assumption, and it is analogous to Taylor's approach for turbulent dispersion. Unlike stochastic dispersion models, this approach does not involve computing a large number of individual particle trajectories in order to adequately represent the particle phase; a few representative particle ensembles are sufficient to describe turbulent dispersion. The particle Lagrangian properties required in this method are based on a previous study (Shirolkar and McQuay, 1998). The fluid phase information available from practical turbulence models is sufficient to estimate the time and length scales in the model. In this study, two different turbulence models are used to solve for the fluid phase – the standard kε model, and a multiple-time-scale (MTS) model. The models developed here are evaluated with the experiments of Sommerfeld and Qiu (1991). A direct comparison between the dispersion model developed in this study and a stochastic dispersion model based on the eddy lifetime concept is also provided. Estimates for the Reynolds stresses required in the stochastic model are obtained from a set of second-order algebraic relations. The results presented in the study demonstrate the computational efficiency of the present dispersion modeling approach. The results also show that the MTS model provides improved single-phase results in comparison to the kε model. The particle statistics, which are computed based on the fundamentals of the present approach, compare favorably with the experimental data. Furthermore, these statistics closely compare to those obtained using a stochastic dispersion model. Finally, the results indicate that the particle predictions are relatively unaffected by whether the Reynolds stresses are based on algebraic relations or on the turbulence isotropy assumption.  相似文献   

5.
The theory of microdamage for materials with a transversely isotropic matrix and unidirectional ellipsoid-like fibers is set forth. Microdamage is modeled by empty pores. The failure criterion for a microvolume is assumed to have the Huber–Mises form where the ultimate strength is a random function of coordinates with a power or Weibull distribution. The stress–strain state and effective properties of the material are determined from the theory of elasticity for materials with a transversely isotropic matrix and unidirectional fibers. The deformation and microdamage equations are closed by the porosity-balance equations. The nonlinear dependences of the coupled processes of deformation and microdamage on macrodeformations are constructed. The effect of physical and geometrical parameters on the processes is studied  相似文献   

6.
In this research, the fluid and thermal characteristics of a rectangular turbulent jet flow is studied numerically. The results of three-dimensional jet issued from a rectangular nozzle are presented. A numerical method employing control volume approach with collocated grid arrangement was employed. Velocity and pressure fields are coupled with SIMPLEC algorithm. The turbulent stresses are approximated using k–e{\varepsilon} model with two different inlet conditions. The velocity and temperature fields are presented and the rates of their decay at the jet centerline are noted. The velocity vectors of the main flow and the secondary flow are illustrated. Also, effect of aspect ratio on mixing in rectangular cross-section jets is considered. The aspect ratios that were considered for this work were 1:1 to 1:4. The results showed that the jet entrains more with smaller AR. Special attention has been drawn to the influence of the Reynolds number (based on hydraulic diameter) as well as the inflow conditions on the evolution of the rectangular jet. An influence on the jet evolution is found for smaller Re, but the jet is close to a converged state for higher Reynolds numbers. The inflow conditions have considerable influence on the jet characteristics.  相似文献   

7.
Summary  A Theoretical analysis is carried out to study the boundary-layer flow over a continuously moving surface through an otherwise quiescent micropolar fluid. The transformed boundary-layer equations are solved numerically for a power-law surface velocity using the Keller-box method. The effects of the micropolar K and exponent m parameters on the velocity and microrotation field as well as on the skin-friction group are discussed in a detailed manner. It is shown that there is a near-similarity solution of this problem. The accuracy of the present solution is also discussed. Accepted for publication 1 April 1996  相似文献   

8.
A model for single-phase turbulent reacting flow is presented and a solution algorithm is described. The model combines the standardk - model for the velocity field with a transport equation for the probability density function (PDF) of the thermochemical variables. In this equation terms describing spatial transport by velocity fluctuations and mixing on the smallest scales are modelled. The essential advantage of this approach is that the effect of nonlinear kinetics appears in closed form and that the influence of turbulent fluctuations on mean reaction rates is included. A stochastic algorithm for the solution of the PDF transport equation, essentially due to Pope, is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles ofN representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor studied earlier by Liu and Barkelew. Spatial profiles of mean species mole fractions and of relative selectivity to the target product are obtained. The profiles are clearly different in both models but at the end of the reactor the same selectivity is predicted.Presented at the Shell Conference on Computational Fluid Dynamics for Petrochemical Process Equipment, Hoenderloo, December 10–12, 1989.  相似文献   

9.
Criteria for the existence and uniqueness of solutions of div-curl boundary value problems on bounded planar regions with nice boundaries are developed. The boundary conditions to be treated include prescribed normal component of the field, tangential component of the field and disjoint combinations of these conditions. Under natural assumptions on the data, when either tangential or normal components are given on the whole boundary, weak (finite-energy) solutions exist if and only if a compatibility condition holds. If the region is simply connected this solution is unique. When the region is multiply connected, there is a finite-dimensional family of solutions. The dimension of the solution space is the Betti number of the region. The problem is well-posed with a unique solution when certain line integrals are further prescribed. L 2 estimates of the solutions are given. If mixed tangential, and normal, components of the field are specified on different parts of the boundary, no compatibility condition is required for solvability. In general, though, there is considerable non-uniqueness of solutions. Well-posedness is recovered by specifying certain line integrals. L 2 estimates of the solutions are given. The dimensionality of the solution space depends on the topology of the boundary data. These results depend on certain weighted orthogonal decompositions of L 2 vector fields on the region which are related to classical Hodge-Weyl decomposition results.  相似文献   

10.
The process of high-velocity collision of a cosmic dust particle against a semi-infinite barrier is numerically simulated. The interaction velocities considered are such that the entire projectile and a considerable portion of the solid target material pass into the gaseous phase. A finite volume method based on the Godunov breakdown scheme with improved resolution is used for calculating the axisymmetric problem. The basic flow singularities are fitted; these are the main shocks, the interfaces between different substances and phases of the same substance, and the boundaries with a vacuum. The entire computational domain is divided into a number of subdomains, correlated with the flow pattern and confined by movable boundaries, and movable difference grids are introduced. An algorithm for solving the Riemann problem on the common sides of adjacent cells is developed for a complicated equation of state. Marked corpuscles, or simply markers, are taken into consideration; tracking their evolution makes it possible to analyze in more detail the numerical results and to check their accuracy. The calculated results for the impact of a porous SiO2 dust particle on a silver target are discussed for the case in which the particle moves at a velocity of 80 km/s normal to the target plane.  相似文献   

11.
Three-dimensional unsteady Euler simulations are presented for the interaction of a streamwise vortex with an oblique shock of angle β = 23.3° at Mach 3 and 5. The flowfield features are analyzed for weak, moderate and strong interaction regimes. The details of the free recirculation zone at conditions of subsonic and supersonic flow on the vortex axis are considered. The vortex breakdown under conditions of a subsonic vortex core is characterized by a continuous growth and gradual degeneration of the region, unlike the supersonic core condition wherein a steady recirculation zone is achieved. The possibility of using a localized steady and pulsed periodic energy deposition on the vortex axis for stimulating the breakdown is demonstrated for various interaction regimes. It is shown that the formation of a subsonic wake downstream of an energy source lying on the vortex axis contributes to a more significant growth of the dimensions of the recirculation zone compared to the case when the vortex core remains supersonic. The possibility of achieving the effects similar to the steady case is demonstrated by the effect of a pulsed periodic energy source on the flow under consideration for corresponding equivalence parameters.   相似文献   

12.
Results of modeling of heat– and mass–transfer processes proceeding simultaneously in vapor absorption on tube banks are described. Theoretical models of film absorption are presented. The calculation results are compared with experimental data on steam absorption by the lithium bromide solution on a vertical tube. In calculation of transfer processes in absorption on horizontal tubes, the possibility of using solutions for the initial thermal length and for the section with a linear temperature profile is substantiated. The calculations are illustrated by the example of a multipass absorber.  相似文献   

13.
Peters  Franz  Ruppel  C. 《Experiments in fluids》2004,36(6):813-818
We report on the development of a new pressure probe that detects the flow direction in wall-bound flow. Two pressure differences are measured and combined in a pressure coefficient which is proportional to the flow direction in a ±20° range. The probe is applied to the secondary flow vortex pair generated in a 90° pipe bend, with excellent results. The vortex pair, and its downstream decay, are identified. Furthermore, the stability of the vortex pair is found to depend sensitively on the upstream conditions. When these are fixed, the vortices stay put; in other words they are spatially stabilized. The consequences for installation effects on flow metering are discussed.  相似文献   

14.
Previous buckling analyses of curved railroad tracks did not take into account the prebuckling lateral expansion of the rails and/or have made the simplifying assumption that the lateral resistance which the ballast exerts on the rail-tie structure is either constant or linear. In this paper, a more refined analysis is presented, which accounts for the prebuckling lateral expansions, and which uses a bilinear response for the lateral resistance, and a non-linear response for the axial resistance. The governing equations are derived from a variational formulation. The obtained solution is exact. It was found that for curves with decreasing radius the safe temperature change, TL, decreases. The results are compared with full scale field test results. The comparison indicates that the analytically obtained safe temperature increases, TL, are on the safe side and thus can be used for design and maintenance purposes. To simplify the use of the obtained solution, it was evaluated numerically for a range of track parameters and the results are presented as graphs.  相似文献   

15.
Linear stability is investigated of a uniform chain of equal spherical gas bubbles rising vertically in unbounded stagnant liquid at Reynolds number Re = 50–200 and bubble spacing s > 2.6 bubble radii. The equilibrium bubble positions are questioned for their stability with respect to small displacements in the vertical direction, parallel to the chain motion. The transverse displacements are not considered, and the chain is assumed to be laterally stable. The bubbles are subjected to three kinds of forces: buoyant, viscous, inviscid. The viscous and inviscid forces have both pairwise (local) and distant (nonlocal) components. The pairwise forces are expressed by the leading-order formulas known from the literature. The distant forces are expressed as a linear superposition of the pairwise forces taken over several farther neighbours. The stability problem is addressed on three different length scales corresponding to: discrete chain (microscale), continuous chain (mesoscale), bubbly chain flow (macroscale). The relevant governing equations are derived for each scale. The microscale equations are a set of ODE’s, the Newton force laws for the individual discrete bubbles. The mesoscale equation is a PDE for bubbles continuously distributed along a line, obtained by taking the continuum limit of the microscale equations. The macroscale equations are two PDEs, the mass and momentum conservation equations, for an ensemble of noninteracting mesoscale chains rising in parallel. This transparent two-step process (micro  meso  macro) is an alternative to the usual one-step averaging, in obtaining the macroscale equations from microscale information. Here, the scale-up methodology is demonstrated for 1D motion of bubbles, but it can be used for behaviour of 2D and 3D lattices of bubbles, drops, and solids.It is found that the uniform equilibrium spacing results from a balance between the attractive and repulsive forces. On all three length scales, the equilibrium is stabilized by the viscous drag force, and destabilized by the viscous shielding force (shielding instability). The inviscid forces are stability neutral and generate conservative oscillations and concentration waves. The stability region in the parameter plane s  Re is determined for each length scale. The stable region is relatively small on the microscale, larger on the mesoscale, and shrinks to zero on the macroscale where the bubbly chain flow is inherently unstable.The shielding instability is expected to occur typically in intermediate Re flows where the vertical bubble interactions dominate over the horizontal interactions. This new kind of instability is studied here in a great detail, likely for the first time. Its relation to the elasticity properties of bubbly suspension on different length scales is discussed too. The shielding force takes the form of a negative bulk modulus of elasticity of the bubbly mixture.  相似文献   

16.
The linearized Burnett equations for a molecular gas are obtained from a kinetic theory based on the Boltzmann equation, and from a phenomenological theory based on extended thermodynamics. The constitutive equation for the pressure tensor of a molecular gas has three terms that do not have appeared in the corresponding equation for a monatomic ideal gas. One is the well-known term proportional to divergence of velocity whose coefficient is the volume viscosity. The two others are proportional to Laplacians of the temperature and of the density, and are associated with athermal (or temperature) pressure and with adensity pressure, respectively.  相似文献   

17.
The breakup mechanism and instability of a power law liquid jet are investigated in this study. The power law model is used to account for the non-Newtonian behavior of the liquid fluid. A new theoretical model is established to explain the breakup of a power law liquid jet with axisymmetric and asymmetric disturbances, which moves in a swirling gas. The corresponding dispersion relation is derived by a linear approximation, and it is applicable for both shear-thinning and shear-thickening liquid jets. Analysis results are calculated based on the temporal mode. The analysis includes the effects of the generalized Reynolds number, the Weber number, the power law exponent, and the air swirl strength on the breakup of the jet. Results show that the shear-thickening liquid jet is more unstable than its Newtonian and shear-thinning counterparts when the effect of the air swirl is taken into account. The axisymmetric mode can be the dominant mode on the power law jet breakup when the air swirl strength is strong enough, while the non-axisymmetric mode is the domination on the instability of the power liquid jet with a high We and a low Re n . It is also found that the air swirl is a stabilizing factor on the breakup of the power law liquid jet. Furthermore, the instability characteristics are different for different power law exponents. The amplitude of the power law liquid jet surface on the temporal mode is also discussed under different air swirl strengths.  相似文献   

18.
This paper is a study of chain recurrence and attractors for maps and semiflows on arbitrary metric spaces. The main results are as follows. (i) C. Conley's characterization of chain recurrence in terms of attractors holds for maps and semiflows on any metric space. (ii) An alternative definition of chain recurrence for semiflows is given and is shown to be equivalent to the usual definition. The alternative definition uses chains formed of orbit segments whose lengths are at least 1, while in the usual definition these lengths are required to be arbitrarily long. (iii) The chain recurrent set of a continuous semiflow is the same as the chain recurrent set of its time-one map. (iv) Conditions on a real-valued function are given that ensure that the semiflow generated by its gradient has only equilibria in its chain recurrent set. An example is given (onR 3) showing that a gradient flow may have nonequilibrium chain recurrent points if these conditions are violated.  相似文献   

19.
20.
In this paper, new nonlinear dynamic formulations for belt drives based on the three-dimensional absolute nodal coordinate formulation are developed. Two large deformation three-dimensional finite elements are used to develop two different belt-drive models that have different numbers of degrees of freedom and different modes of deformation. Both three-dimensional finite elements are based on a nonlinear elasticity theory that accounts for geometric nonlinearities due to large deformation and rotations. The first element is a thin-plate element that is based on the Kirchhoff plate assumptions and captures both membrane and bending stiffness effects. The other three-dimensional element used in this investigation is a cable element obtained from a more general three-dimensional beam element by eliminating degrees of freedom which are not significant in some cable and belt applications. Both finite elements used in this investigation allow for systematic inclusion or exclusion of the bending stiffness, thereby enabling systematic examination of the effect of bending on the nonlinear dynamics of belt drives. The finite-element formulations developed in this paper are implemented in a general purpose three-dimensional flexible multibody algorithm that allows for developing more detailed models of mechanical systems that include belt drives subject to general loading conditions, nonlinear algebraic constraints, and arbitrary large displacements. The use of the formulations developed in this investigation is demonstrated using two-roller belt-drive system. The results obtained using the two finite-element formulations are compared and the convergence of the two finite-element solutions is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号