首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
In this work, fullerene modified TiO(2) nanocomposites (denoted as C(60)/TiO(2)) with low C(60) loadings (0-1.5 wt.%) have been prepared by a simple hydrothermal method using tetrabutylorthotitanate (TBOT, Ti(OC(4)H(9))(4)) as the titanium precursor. The as-prepared C(60)/TiO(2) nanocomposites were characterized by X-ray diffraction, transmission electron microscopy, UV-visible spectrophotometry, nitrogen adsorption, and X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy. The formation of hydroxyl radicals (˙OH) on the surface of UV-illuminated TiO(2) is probed by photoluminescence using terephthalic acid as a probe molecule. Our results have demonstrated that C(60) molecules can be dispersed as a monolayer onto bimodal mesoporous TiO(2)via covalent bonding. The photocatalytic oxidation rate of gas-phase acetone over C(60)/TiO(2) nanocomposites is greater than that over pure TiO(2), commercial Degussa P25 (P25) and C(60)-TiO(2) counterparts prepared by simple impregnating mixing. In particular, 0.5 wt.% C(60)/TiO(2) nanocomposites show the greatest photocatalytic activity with the rate constant k exceeding that of P25 by a factor of 3.3. Based on the results of the current study, we propose that C(60) molecules doped onto TiO(2) act as "electron acceptors" responsible for the efficient separation of photogenerated charge carriers and the enhancement of photocatalytic activity. The proposed mechanism for the observed photocatalytic performance of C(60)/TiO(2) nanocomposites is further corroborated by experiments on hydroxyl radical and transient photocurrent response.  相似文献   

2.
The interface modification effect within quasi-solid dye-sensitized solar cells and the photovoltaic performance were investigated after the introduction of Mg(OOCCH(3))(2) as an additive into a polymer gel electrolyte. Electrochemical impedance spectroscopy showed that the addition of Mg(OOCCH(3))(2) into the polymer gel electrolyte can efficiently retard charge recombination at the TiO(2)/electrolyte interface. Mg(OOCCH(3))(2) in the electrolyte can also contribute to the enhancement of the incident photon-to-electron conversion efficiency by modifying the dye molecules. This results in an improvement in the photovoltage and photocurrent due to a barrier layer at the TiO(2)/electrolyte interface and the promotion of charge injection at the dye/TiO(2) interface, respectively. Photovoltaic measurements reveal that a conversion efficiency enhancement from 4.05% to 4.96% under 100 mW cm(-2) is obtained after the amount of Mg(OOCCH(3))(2) added was optimized.  相似文献   

3.
The paper reports on the use of a titanium oxide (TiO(2)) nanotube layer as a sensitive substrate for surface-assisted laser desorption-ionization mass spectrometry (SALDI-MS) of peptides and small molecules. The nanotube layers were prepared by electrochemical anodization of titanium foil. The optimized TiO(2) nanotubes morphology coupled to a controlled surface chemistry allowed desorption-ionization (D/I) of a peptide mixture (Mix1) with a detection limit of 10 femtomoles for the neurotensin peptide. The performance of the TiO(2) nanotubes for the D/I of small molecules was also tested for the detection of sutent, a small tyrosine kinase inhibitor, and verapamil. A detection limit of 50 fmol was obtained for these molecules, as compared to 500 fmol using classical matrix-assisted laser desorption-ionization mass spectrometry (MALDI-MS). Both amorphous and anatase TiO(2) layers displayed a comparable performance for D/I of analyte molecules. In a control experiment, we have performed D/I of analyte molecules on a flat TiO(2) layer. The absence of signal emphasizes the role of the nanostructured substrate in the D/I process.  相似文献   

4.
The effect of the Sb and Nb additives on the V(2)O(5)/TiO(2) catalyst for the selective catalytic reduction (SCR) of NO with NH(3) was investigated. The experimental results show that either Nb or Sb can improve the activity of V(2)O(5)/TiO(2) catalyst. Higher Nb loading led to higher N(2) selectivity. The co-doping of Sb and Nb showed higher improving effect than the single doping of Sb or Nb. The V(2)O(5)/TiO(2) catalyst doped with Sb and Nb had a better H(2)O resistance than the V(2)O(5)/TiO(2) catalyst. The addition of Sb and Nb also enhance the resistance of the V(2)O(5)/TiO(2) catalyst to K(2)O poisoning. The catalysts were characterized by BET, XRD, TEM, and XPS. The results showed that the active components of V, Sb, and Nb were well interacting with each other. The coexistence of Sb and Nb will enhance the redox ability and surface acidity and thus promote the SCR performance.  相似文献   

5.
研究了Eu(DBM)3(DiBut-bpy)/TiO2/AA 单分子膜的表面压-分子面积(π-A)曲线和稳定性,单层膜中的TiO2纳米粒子是经TBT(tetrabutyloxyltitanium ,钛酸四丁酯)二维溶胶-凝胶法得到的.TiO2纳米粒子和铕络合物都被成功地转移到固体基片上,得到了具有良好的机械和热稳定性的新型发光薄膜.小角度X射线衍射结果证明这种复合膜具有层状有序的周期性结构.讨论了TiO2基质对复合膜发光机理的影响.  相似文献   

6.
The surfaces of fumed silica materials were modified with a surface sol-gel process for catalysis applications. This surface-modification approach allows not only a monolayer growth of TiO(2) or Al(2)O(3) but also a stepwise double-layer growth of TiO(2)/TiO(2), Al(2)O(3)/Al(2)O(3), TiO(2)/Al(2)O(3), or Al(2)O(3)/TiO(2) on the surfaces of the silica materials with a monolayer precision. XRD analyses revealed that the coated monolayers and double layers of TiO(2) and Al(2)O(3) were amorphous. Gold nanoparticles were successfully deposited on the above six surface-modified silica materials via a deposition-precipitation method. The catalytic activities of these six gold catalysts for CO oxidation are highly dependent on the structures of their surface monolayers or double layers. The gold catalyst supported on the silica material functionalized with a TiO(2) monolayer (Au/TiO(2)) is the most active in both as-synthesized and oxidized forms, while the gold catalyst supported on the silica material functionalized with an Al(2)O(3)/TiO(2) double layer (Au/Al(2)O(3)/TiO(2)/SiO(2)) is the most active in the reduced form among the six catalysts. Surprisingly, the gold catalyst supported on the silica material functionalized with a TiO(2)/Al(2)O(3) double layer (Au/TiO(2)/Al(2)O(3)/SiO(2)) has much less activity than Au/Al(2)O(3)/TiO(2)/SiO(2) under all various treatments, underscoring the sensitivity of the catalytic activity to the structure of the supporting surfaces.  相似文献   

7.
Novel TiO(2)/carbon nanocomposites were prepared through the pyrolysis of TiO(2)/poly(furfuryl alcohol) hybrid materials, which were obtained by the sol-gel method, starting from titanium tetraisopropoxide (TTIP) and furfuryl alcohol (FA) precursors. Six different TiO(2)/C samples were prepared based on different TiO(2) nanoparticle sizes and TiO(2)/FA ratios. All of the samples were characterized using X-ray diffraction, infrared, and Raman spectroscopy. The results indicated effective FA polymerization onto the TiO(2) (anatase) nanoparticles, polymer conversion to disordered carbon following the pyrolysis, and a simultaneous TiO(2) anatase-rutile phase transition. The resulting TiO(2)/carbon composites were used as photocatalysts in the advanced oxidative process (AOP) for the degradation of reactive organic dyes in aqueous solution. The results indicate excellent photocatalytic performance (degradation of 99% of the dye after 60 min) with several advantages over traditional TiO(2)-based photocatalysts.  相似文献   

8.
UV-light irradiation to TiO(2) in an aqueous ethanol solution of (NH(4))(2)MoS(4) under deaerated conditions has yielded molybdenum(IV) sulfide nanoparticles on a TiO(2) surface (MoS(2)/TiO(2)) to be transformed into molybdenum(VI) oxide species highly dispersed at a molecular level by a subsequent heating at 773K in air (m-MoO(3)/TiO(2)). In HCOOH aqueous solutions, the MoS(2)/TiO(2) system exhibits a high level of photocatalytic activity for H(2) generation, while the m-MoO(3)/TiO(2) system shows unique photochromism.  相似文献   

9.
A major loss mechanism in dye-sensitized solar cells (DSCs) is recombination at the TiO(2)/electrolyte interface. Here we report a method to reduce greatly this loss mechanism. We deposit insulating and transparent silica (SiO(2)) onto the open areas of a nanoparticulate TiO(2) surface while avoiding any deposition of SiO(2) over or under the organic dye molecules. The SiO(2) coating covers the highly convoluted surface of the TiO(2) conformally and with a uniform thickness throughout the thousands of layers of nanoparticles. DSCs incorporating these selective and self-aligned SiO(2) layers achieved a 36% increase in relative efficiency versus control uncoated cells.  相似文献   

10.
The catalytic oxidation of CO was performed over Au/TiO(2) under UV irradiation in the presence of H(2) in different reaction systems. It was found that the introduction of H(2) enhanced the CO thermocatalytic oxidation in a CO pre-introduced system (CO/O(2)vs. CO/H(2)/O(2)), but suppressed that in an O(2) pre-introduced (O(2)/CO vs. O(2)/H(2)/CO) system. Although the CO oxidation in both CO/H(2)/O(2) and O(2)/H(2)/CO systems could be remarkably enhanced under UV irradiation, the oxidation of H(2) was suppressed under UV irradiation. It was proposed that the dissociative chemisorption H ([triple bond]Ti-H) at surface oxygen vacancy sites of TiO(2) could act as both the electron-acceptors for the photogeneration electrons and the electron-donors for the chemisorbed O(2) at TiO(2), and thus enhance the CO oxidation during the coinstantaneous process of thermocatalysis and photocatalysis. The suppression of H(2) thermocatalytic oxidation under UV irradiation might be ascribed to the electron transfer effect, i.e., the dissociative chemisorption H on Au (Au-H) could be desorbed at the H(2) molecule via accepting the photogenerated electrons from TiO(2).  相似文献   

11.
Sequential impregnations of metal ions and titanium tetraisopropoxide (TTIP) into activated carbon fibers (ACF) followed by a solvothermal treatment has been found to be a general method in the preparations of homogeneous and composition-tunable hybrid TiO(2) hierarchical nanocomposite fibers like WO(3)/TiO(2), Fe(2)O(3)/TiO(2) and SnO(2)/TiO(2).  相似文献   

12.
Two classes of phosphonic acid-bearing organic molecules, 2-oligothiophene phosphonic acid and omega-(2-thienyl)alkyl phosphonic acid were adopted as interface modifiers (IMs) of the TiO(2) surface, to increase its compatibility with poly(3-hexylthiophene) (P3HT). The self-assembled monolayers of these molecules on titania surface were characterized by making contact angle measurements and X-ray photoelectron spectroscopy (XPS). Atomic force microscopic (AFM) images revealed that the adsorption of IMs effectively smooths the TiO(2) surface. Both photoluminescence (PL) spectroscopy and PL lifetime measurements were made to investigate the photoinduced properties of the TiO(2)/IM/P3HT layered-junction. The PL quenching efficiency increased with the number of thiophene rings and as the alkyl chain-length in IMs decreased. Meanwhile, the decline in the PL lifetime followed a similar trend as the PL quenching efficiency. Additionally, the power conversion efficiency (PCE) of the ITO/TiO(2)/IM/P3HT/Au devices was examined by measuring their photocurrent density-applied voltage (J-V) curves. The experimental results indicated that the short-circuit current density (J(SC)) increased with the number of thiophene units and as the hydrocarbon chain-length in IMs decreased. However, the open-circuit voltage (V(OC)) of the devices slightly fell as the energy level of the highest occupied molecular orbital (HOMO) of IM decreased. The PCE of the device with 2-terthiophene phosphonic acid was 2.5 times that of the device with 10-(2-thienyl)decyl phosphonic acid.  相似文献   

13.
A novel core/shell structured TiO(2)/polyaniline nanocomposite was fabricated by grafting aniline on aminobenzoate monolayer that is chemically adsorbed on the TiO(2) nanocrystal surface. The formation and nanostructure of the nanocomposite were investigated by FT-IR and UV-Vis spectra, TEM, FE-SEM, and TG-DTA analysis. Adsorption of aminobenzoate on the TiO(2) surface is an effective method to obtain the uniform nanocomposite. The thickness of polyaniline layer coating on the TiO(2) nanocrystal surface can be controlled in a range of 2-5 nm by this method. A photoelectrochemical study was carried out on the TiO(2)/polyaniline nanocomposite, and found that polyaniline in the nanocomposite acted as a visible-light sensitizer in a photoelectrochemical reaction. The sensitization effect increased with increasing binding strength between polyaniline and TiO(2). A dye-sensitized solar cell with a short circuit current density of 0.19 mA/cm(2) and an open circuit voltage of 0.35 V was fabricated by using the TiO(2)/polyaniline nanocomposite film as a sensitized electrode.  相似文献   

14.
Herein, we have demonstrated that the electrospun nanofibers of TiO(2)/CdS heteroarchitectures could be fabricated through combining electrospinning technique with hydrothermal process. The configuration, crystal structure, and element composition of the as-prepared TiO(2)/CdS heteroarchitectures were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray diffraction (XRD), resonant Raman spectrometer, X-ray photoelectron spectroscopy (XPS). The results indicated that the high-density hexagonal wurtzite CdS crystalline particles of ca. 6-40 nm in diameter were uniformly and closely grown on anatase TiO(2) nanofibers. Especially, the light-absorption properties as well as photocatalytic characteristics of pure TiO(2) nanofibers and TiO(2)/CdS heteroarchitectures with different amount loading of CdS were also investigated. The absorption of TiO(2)/CdS heteroarchitectures was extended to the visible due to effective immobilization of sensitizing agent CdS on TiO(2). In contrast with the pure TiO(2) nanofibers, the TiO(2)/CdS heteroarchitectures showed excellent photocatalytic activity by using rhodamine B dye as a model organic substrate under visible-light irradiation. It was worth noting that the cooperative photocatalytic mechanism of the TiO(2)/CdS heteroarchitectures was also discussed.  相似文献   

15.
Surface platinized TiO(2) (Pt/TiO(2)) has been frequently studied, but its photocatalytic reactivities reported in the literature are not consistent in some cases. To understand the discrepancies, the effects of Pt speciation on TiO(2) on the photocatalytic degradation (PCD) of a few chlorinated organic compounds (trichloroethylene (TCE), perchloroethylene (PCE), dichloroacetate, etc.) were investigated with several Pt/TiO(2) samples that were prepared differently. The oxidation state of Pt deposits was analyzed by X-ray photoelectron spectroscopy and was found to be the most important factor in determining the initial PCD rates of chlorinated organic compounds. TiO(2) with oxidized Pt species (Pt(ox)/TiO(2)) was less reactive than TiO(2) with metallic Pt (Pt(0)/TiO(2)) for all substrates tested. In particular, Pt(ox)/TiO(2) strongly inhibited the PCD of TCE and PCE whereas it was more reactive than pure TiO(2) for the PCD of other compounds. The photocurrents obtained with the Pt(ox)/TiO(2) electrode were lower than those with the Pt(0)/TiO(2) electrode, which was ascribed to the role of Pt(ox) species as a recombination center. It is proposed that TCE adsorbed on Pt(ox) chemically mediates the charge recombination through the redox cycle of TCE. The Pt effects in photocatalysis are highly substrate-specific and depend on the Pt-substrate interaction as well as the properties of Pt deposits.  相似文献   

16.
Nano-sized TiO(2) or SiO(2)/TiO(2) particles were prepared by hydrolysis and condensation reactions in aqueous media, followed by mixing with poly(AA-co-MMA) latex to form different composites, then blending with poly(ethylene terephthalate), PET. The TGA results of composites indicated that negative charged latexes had greater interaction with TiO(2)/ or SiO(2)/TiO(2) particles through strong electrostatic forces, while cationic latexes incorporated with TiO(2) or SiO(2)/TiO(2) particles by pH induced coagulation, carbonyl group chelation and hydrogen bonding. The soapless latex polymer particles showed lower ability of adsorption to TiO(2) particles due to the decrease of total surface area of these larger particles. If SiO(2)/TiO(2) particles were used instead of TiO(2) particles, unexpected high adsorption result was observed. Morphology results observed by SEM showed that PET blended with positive charged composites was more homogeneous than PET blended with negative charged composites. DSC results also indicated that the T(g) of PET was increased, melting temperatures (T(m) or T(m)(')) were increased, and the temperature range of crystallization was narrowed after blending with the composites. The presence of composites affected the mobility and packing of PET molecular chains therefore changing the thermal properties of PET.  相似文献   

17.
This paper deals with the textural, microstructural and interfacial properties of Au/TiO(2) nanocomposites, in relation to their photocatalytic activity for splitting of water. TiO(2) samples of two different morphologies were employed for dispersing different cocatalysts, such as: Au, Pt, Ag or Cu, for the sake of comparison. The samples were characterized using powder XRD, XPS, UV-visible, thermoluminescence, SEM, HRTEM and SAED techniques. Compared to other metal/TiO(2) photocatalysts, Au/TiO(2) with an optimum gold loading of 1 wt% was found to exhibit considerably higher activity for visible light induced production of H(2) from splitting water in the presence of methanol. Further, the sol-gel prepared TiO(2) (s.TiO(2)), having spherical grains of 10-15 nm size, displayed better photoactivity than a Degussa P25 catalyst. The electron microscopy investigations on s.TiO(2) revealed significant heterogeneity in grain morphology of individual TiO(2) particles, exposure of the lattice planes, metal dispersion, and the interfacial metal/TiO(2) contacts. The gold particles were found to be in a better dispersed state. O(2) TPD experiments revealed that the gold nanoparticles and Au/TiO(2) interfaces may serve as distinct binding sites for adsorbate molecules. At the same time, our thermoluminescence measurements provide an insight into Au-induced new defect states that may facilitate the semiconductor-to-metal charge transfer transition. In conclusion, the superior photocatalytic activity of Au/TiO(2) may relate to the grain morphology of TiO(2), dispersion of gold particles, and the peculiar architecture of metal/oxide heterojunctions; giving rise in turn to augmented adsorption of reactant molecules and their interaction with the photo-generated e(-)/h(+) pair. The role played by methanol as a sacrificial reagent in photocatalytic splitting of water is discussed.  相似文献   

18.
用恒电流复合电沉积方法制备(Ni-Mo)/TiO2薄膜,以扫描电子显微镜(SEM)、X射线衍射(XRD)、拉曼(Raman)光谱和紫外-可见漫反射光谱(UV-VisDRS)对薄膜的表面形貌、晶相结构和光谱特性进行了表征,以刚果红为模拟污染物对薄膜的光催化性能进行了测定,并讨论了刚果红溶液的pH值对薄膜光催化活性的影响.采用循环伏安技术和向溶液中加入活性物种捕获剂的方法对薄膜光催化降解机理进行了探索.结果表明:(Ni-Mo)/TiO2薄膜是由粒径为50-100nmTiO2纳米粒子相和纳米晶Ni-Mo固溶体相构成的复合薄膜.薄膜具有较高的光催化活性,卤钨灯照射80min后,复合薄膜光催化刚果红的降解率是多孔TiO2(DegussaP25)/ITO(氧化铟锡)纳米薄膜的2.43倍.(Ni-Mo)/TiO2薄膜光催化活性的提高主要归因于薄膜层中有效形成的(Ni-Mo)/TiO2异质结和良好的电子通道,以及Ni-Mo纳米晶合金对溶解氧和激发电子还原反应的催化作用.分别给出了在紫外和可见光下薄膜光催化降解刚果红的反应机理.  相似文献   

19.
A WO(3)/TiO(2) composite is constructed with the ability to degrade organic molecules under visible irradiation, which is newly explored by UV pre-irradiation. The long lasting visible-light photoactivity and the consecutive photocatalytic process will benefit the efficient use of solar energy.  相似文献   

20.
Microwave-assisted photocatalytic (MAPC) degradation of atrazine over nanotitania coated multiwalled carbon nanotubes (TiO(2)/MWCNTs) was investigated in this study. As a result, degradation efficiency of atrazine over TiO(2)/CNTs prepared by hydrothermal method was about 30% and 20% higher than that of titania P25 and anatase prepared hydrothermally in given time. The TiO(2)/CNTs composite samples were characterized by TGA-DSC, TEM, UV-vis DRS, XRD and BET, to explain the reason for efficient degradation and adsorption process of atrazine. Microwave thermal effect in this process was also investigated. Intermediates of degradation both in MAPC process and microwave-assisted photodegradation (MAPD) process were identified by LC/MS. It suggests that MWCNTs have special effects on atrazine degradation during MAPC process, like strong microwave absorption capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号