首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了不同化学计量比(x=0.25, 0.5, 0.75, 1.0, 1.25)和放氢背压(1×10-4和0.4 MPa)对LiBH4+xMg2NiH4复合体系吸放氢性能的影响. 结果表明, 随着化学计量比(x)的增加, 复合体系的放氢温度逐渐降低, 放氢动力学性能得到提高, 但放氢容量逐渐降低; 其中, 在1×10-4和0.4 MPa初始放氢背压下, LiBH4+0.75Mg2NiH4体系具有最佳放氢动力学性能和较高的储氢容量. 结果表明, 放氢背压和化学计量比均会对高温下液相LiBH4 与固态Mg2NiH4 的润湿性产生影响, 进而影响复合体系的放氢路径和放氢动力学性能.  相似文献   

2.
Mg(AlH(4))(2) is found to provide a synergistic effect on improving the de-/rehydrogenation properties of LiBH(4). The Mg(AlH(4))(2)-catalyzed LiBH(4) exhibits lower dehydrogenation temperature and faster de-/rehydrogenation kinetics than the individually MgH(2)- or Al-catalyzed LiBH(4).  相似文献   

3.
A new ammine dual-cation borohydride, LiMg(BH(4))(3)(NH(3))(2), has been successfully synthesized simply by ball-milling of Mg(BH(4))(2) and LiBH(4)·NH(3). Structure analysis of the synthesized LiMg(BH(4))(3)(NH(3))(2) revealed that it crystallized in the space group P6(3) (no. 173) with lattice parameters of a=b=8.0002(1) ?, c=8.4276(1) ?, α=β=90°, and γ=120° at 50 °C. A three-dimensional architecture is built up through corner-connecting BH(4) units. Strong N-H···H-B dihydrogen bonds exist between the NH(3) and BH(4) units, enabling LiMg(BH(4))(3)(NH(3))(2) to undergo dehydrogenation at a much lower temperature. Dehydrogenation studies have revealed that the LiMg(BH(4))(3)(NH(3))(2)/LiBH(4) composite is able to release over 8 wt% hydrogen below 200 °C, which is comparable to that released by Mg(BH(4))(3)(NH(3))(2). More importantly, it was found that release of the byproduct NH(3) in this system can be completely suppressed by adjusting the ratio of Mg(BH(4))(2) and LiBH(4)·NH(3). This chemical control route highlights a potential method for modifying the dehydrogenation properties of other ammine borohydride systems.  相似文献   

4.
Reversible storage of hydrogen in destabilized LiBH4   总被引:3,自引:0,他引:3  
Destabilization of LiBH4 for reversible hydrogen storage has been studied using MgH2 as a destabilizing additive. Mechanically milled mixtures of LiBH4 + (1/2)MgH2 or LiH + (1/2)MgB2 including 2-3 mol % TiCl3 are shown to reversibly store 8-10 wt % hydrogen. Variation of the equilibrium pressure obtained from isotherms measured at 315-400 degrees C indicate that addition of MgH2 lowers the hydrogenation/dehydrogenation enthalpy by 25 kJ/(mol of H2) compared with pure LiBH4. Formation of MgB2 upon dehydrogenation stabilizes the dehydrogenated state and, thereby, destabilizes the LiBH4. Extrapolation of the isotherm data yields a predicted equilibrium pressure of 1 bar at approximately 225 degrees C. However, the kinetics were too slow for direct measurements at these temperatures.  相似文献   

5.
LiBH4 is a complex hydride and exhibits a high gravimetric hydrogen density of 18.5 wt %. Therefore it is a promising hydrogen storage material for mobile applications. The stability of LiBH4 was investigated by pcT (pressure, concentration, and temperature) measurements under constant hydrogen flows and extrapolated to equilibrium. According to the van 't Hoff equation the following thermodynamic parameters are determined for the desorption: enthalpy of reaction DeltarH = 74 kJ mol-1 H2 and entropy of reaction DeltarS = 115 J K-1 mol-1 H2. LiBH4 decomposes to LiH + B + 3/2H2 and can theoretically release 13.9 wt % hydrogen for this reaction. It is shown that the reaction can be reversed at a temperature of 600 degrees C and at a pressure of 155 bar. The formation of LiBH4 was confirmed by XRD (X-ray diffraction). In the rehydrided material 8.3 wt % hydrogen was desorbed in a TPD (temperature-programmed desorption) measurement compared to 10.9 wt % desorbed in the first dehydrogenation.  相似文献   

6.
In this paper, ammine lithium borohydride (LiBH(4)·NH(3)) was successfully impregnated into multi-walled carbon nanotubes (CNTs) through a melting technique. X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller, and density measurements were employed to confirm the formation of the nanostructured LiBH(4)·NH(3)/CNTs composites. As a consequence, it was found that the dehydrogenation of the loaded LiBH(4)·NH(3) was remarkably enhanced, showing an onset dehydrogenation at temperatures below 100 °C, together with a prominent desorption of pure hydrogen at around 280 °C, with a capacity as high as 6.7 wt.%, while only a trace of H(2) liberation was present for the pristine LiBH(4)·NH(3) in the same temperature range. Structural examination indicated that the significant modification of the thermal decomposition route of LiBH(4)·NH(3) achieved in the present study is due to the CNT-assisted formation of B-N-based hydride composite, starting at a temperature below 100 °C. It is demonstrated that the formation of this B-N-based hydride covalently stabilized the [NH] groups that were weakly coordinated on Li cations in the pristine LiBH(4)·NH(3)via strong B-N bonds, and furthermore, accounted for the substantial hydrogen desorption at higher temperatures.  相似文献   

7.
We examined the catalytic effect of nanoparticle 3d-transition metals on hydrogen desorption (HD) properties of MgH(2) prepared by mechanical ball milling method. All the MgH(2) composites prepared by adding a small amount of nanoparticle Fe(nano), Co(nano), Ni(nano), and Cu(nano) metals and by ball milling for 2 h showed much better HD properties than the pure ball-milled MgH(2) itself. In particular, the 2 mol % Ni(nano)-doped MgH(2) composite prepared by soft milling for a short milling time of 15 min under a slow milling revolution speed of 200 rpm shows the most superior hydrogen storage properties: A large amount of hydrogen ( approximately 6.5 wt %) is desorbed in the temperature range from 150 to 250 degrees C at a heating rate of 5 degrees C/min under He gas flow with no partial pressure of hydrogen. The EDX micrographs corresponding to Mg and Ni elemental profiles indicated that nanoparticle Ni metals as catalyst homogeneously dispersed on the surface of MgH(2). In addition, it was confirmed that the product revealed good reversible hydriding/dehydriding cycles even at 150 degrees C. The hydrogen desorption kinetics of catalyzed and noncatalyzed MgH(2) could be understood by a modified first-order reaction model, in which the surface condition was taken into account.  相似文献   

8.
MgH(2) has too high an operating temperature for many hydrogen storage applications. However, MgH(2) ball-milled with Ge leads to a thermodynamic destabilisation of >50 kJ mol(-1)(H(2)). This has dramatically reduced the temperature of dehydrogenation to 130 °C, opening up the potential for Mg-based multicomponent systems as hydrogen stores for a range of applications.  相似文献   

9.
Nano-composites of LiNH(2)-LiH-xMg(BH(4))(2) (0 ≤ x ≤ 2) were prepared by plasma metal reaction followed by a nucleation growth method. Highly reactive LiNH(2)-LiH hollow nanoparticles offered a favorable nucleus during a precipitation process of liquid Mg(BH(4))(2)·OEt(2). The electron microscopy results suggested that more than 90% of the obtained nano-composites were in the range 200-400 nm. Because of the short diffusion distance and ternary mixture self-catalyzing effect, this material possesses enhanced hydrogen (de)sorption attributes, including facile low-temperature kinetics, impure gases attenuation and partial reversibility. The optimal hydrogen storage properties were found at the composition of LiNH(2)-LiH-0.5Mg(BH(4))(2), which was tentatively attributed to a Li(4)(NH(2))(2)(BH(4))(2) intermediate. 5.3 wt% hydrogen desorption could be recorded at 150 °C, with the first 2.2 wt% release being reversible. This work suggests that controlled in situ hybridization combined with formula optimization can improve hydrogen storage properties.  相似文献   

10.
Hydrides of period 2 and 3 elements are promising candidates for hydrogen storage but typically have heats of reaction that are too high to be of use for fuel cell vehicles. Recent experimental work has focused on destabilizing metal hydrides through alloying with other elements. A very large number of possible destabilized metal hydride reaction schemes exist. The thermodynamic data required to assess the enthalpies of these reactions, however, are not available in many cases. We have used first principles density functional theory calculations to predict the reaction enthalpies for more than 100 destabilization reactions that have not previously been reported. Many of these reactions are predicted not be useful for reversible hydrogen storage, having calculated reaction enthalpies that are either too high or too low. More importantly, our calculations identify five promising reaction schemes that merit experimental study: 3LiNH(2) + 2LiH + Si --> Li(5)N(3)Si + 4H(2), 4LiBH(4) + MgH(2) --> 4LiH + MgB(4) + 7H(2), 7LiBH(4) + MgH(2) --> 7LiH + MgB(7) + 11.5H(2), CaH(2) + 6LiBH(4) --> CaB(6) + 6LiH + 10H(2), and LiNH(2) + MgH(2) --> LiMgN + 2H(2).  相似文献   

11.
采用球磨法制备了3LiBH4/CeF3反应体系, 通过压力-组成-温度(PCT)测试仪、 X射线衍射仪(XRD)和傅里叶变换红外光谱仪(FTIR)研究了体系的放氢性能、 反应机制及性能改善机理. 结果表明, 3LiBH4/CeF3体系在295 ℃左右快速放氢, 总放氢量为4.1%(质量分数). 放氢过程中CeF3与LiBH4直接发生反应: 3LiBH4+CeF31/2CeB6+1/2CeH2+3LiF+11/2H2. 与纯LiBH4相比, 放氢热力学稳定性和表观活化能的降低是3LiBH4/CeF3体系放氢温度下降的主要原因.  相似文献   

12.
The possibility of generating MgH(2) nanoparticles from Grignard reagents was investigated. To this aim, five Grignard compounds, i.e. di-n-butylmagnesium, tert-butylmagnesium chloride, allylmagnesium bromide, m-tolylmagnesium chloride, and methylmagnesium bromide were selected for the potential inductive effect of their hydrocarbon group in leading to various magnesium nanostructures at low temperatures. The thermolysis of these Grignard reagents was characterised in order to determine the optimal conditions for the formation of MgH(2). In particular, the use of di-n-butylmagnesium was found to lead to self-assembled and stabilized nanocrystalline MgH(2) structures with an impressive hydrogen storage capacity, i.e. 6.8 mass%, and remarkable hydrogen kinetics far superior to that of milled or nanoconfined magnesium. Hence, it was possible to achieve hydrogen desorption without any catalyst at 250 °C in less than 2 h, while at 300 °C, hydrogen desorption took only 15 min. These superior performances are believed to result from the unique physical properties of the MgH(2) nanocrystalline architecture obtained after hydrogenolysis of di-n-butylmagnesium.  相似文献   

13.
The use of the interaction of two hydrides is a well-known concept used to increase the hydrogen equilibrium pressure of composite mixtures in comparison to that of pure systems. The thermodynamics and reaction kinetics of such hydride composites are reviewed and experimentally verified using the example NaBH(4) + MgH(2). Particular emphasis is placed on the measurement of the kinetics and stability using thermodesorption experiments and measurements of pressure-composition isotherms, respectively. The interface reactions in the composite reaction were analysed by in situ X-ray photoelectron spectroscopy and by simultaneously probing D(2) desorption from NaBD(4) and H(2) desorption from MgH(2). The observed destabilisation is in quantitative agreement with the calculated thermodynamic properties, including enthalpy and entropy. The results are discussed with respect to kinetic limitations of the hydrogen desorption mechanism at interfaces. General aspects of modifying hydrogen sorption properties via hydride composites are given.  相似文献   

14.
The dehydrogenation enthalpies of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) have been calculated using density functional theory calculations at the generalized gradient approximation level. Harmonic phonon zero point energy (ZPE) corrections have been included using Parlinski's direct method. The dehydrogenation of Ca(AlH(4))(2) is exothermic, indicating a metastable hydride. Calculations for CaAlH(5) including ZPE effects indicate that it is not stable enough for a hydrogen storage system operating near ambient conditions. The destabilized combination of LiBH(4) with CaH(2) is a promising system after ZPE-corrected enthalpy calculations. The calculations confirm that including ZPE effects in the harmonic approximation for the dehydrogenation of Ca(AlH(4))(2), CaAlH(5), and CaH(2)+6LiBH(4) has a significant effect on the calculated reaction enthalpy. The contribution of ZPE to the dehydrogenation enthalpies of Ca(AlH(4))(2) and CaAlH(5) calculated by the direct method phonon analysis was compared to that calculated by the frozen-phonon method. The crystal structure of CaAlH(5) is presented in the more useful standard setting of P2(1)c symmetry and the phonon density of states of CaAlH(5), significantly different to other common complex metal hydrides, is rationalized.  相似文献   

15.
在室温和氩气气氛下, 以MgH2 和纳米Fe为原料, 采用机械合金化(球磨法)制备了Mg2FeH6纳米晶. 考察了球磨参数(时间、 转速)对产物的影响, 对所制备的Mg2FeH6 纳米晶的组成、 结构和形貌进行了表征, 并对其储氢性能进行了测试. 结果表明, 所制备的Mg2FeH6纳米晶为立方结构, 纯度较高(91.4%), 其晶粒尺寸较小, 约为10~30 nm, 但团聚现象较为严重. Mg2FeH6纳米晶具有较低的活化能和较好的吸放氢动力学性能, 其放氢的脱附焓和脱附熵分别为(-42.8±2) kJ/mol和(-72.0±3) J/(mol·K). 在503 K和6 kPa的氢气压力下, Mg2FeH6纳米晶在70 min内放氢量达到2.5%(质量分数); 在2 MPa的氢气压力下, 上述放氢产物具有较快的起始吸氢速率.  相似文献   

16.
MgH(2)-TiH(2) nanocomposites have been obtained by reactive ball milling of elemental powders under 8 MPa of hydrogen pressure. The composites consist of a mixture of β-rutile MgH(2), γ-orthorhombic high pressure MgH(2) and ε-tetragonal TiH(2) phases with nanosized crystallites ranging from 4 to 12 nm. In situ hydrogen absorption curves on milling reveal that nanocomposite formation occurs in less than 50 min through the consecutive synthesis of the TiH(2) and MgH(2) phases. The abrasive and catalytic properties of TiH(2) speed up the formation of the MgH(2) phase. Thermodynamic, kinetic and cycling hydrogenation properties have been determined for the 0.7MgH(2)-0.3TiH(2) composite and compared to nanometric MgH(2). Only the MgH(2) phase desorbs hydrogen reversibly at moderate temperature (523 to 598 K) and pressure (10(-3) to 1 MPa). The presence of TiH(2) does not modify the thermodynamic properties of the Mg/MgH(2) system. However, the MgH(2)-TiH(2) nanocomposite exhibits outstanding kinetic properties and cycling stability. At 573 K, H-sorption takes place in less than 100 s. This is 20 times faster than for a pure nanometric MgH(2) powder. We demonstrate that the TiH(2) phase inhibits grain coarsening of Mg, which allows extended nucleation of the MgH(2) phase in Mg nanoparticles before a continuous and blocking MgH(2) hydride layer is formed. The low crystallinity of the TiH(2) phase and its hydrogenation properties are also compatible with a gateway mechanism for hydrogen transfer from the gas phase to Mg. Mg-rich MgH(2)-TiH(2) nanocomposites are an excellent media for hydrogen storage at moderate temperatures.  相似文献   

17.
Herein, an initial attempt to understand the relationships between hydrogen storage properties, reaction pathways, and material compositions in LiBH4x Mg(AlH4)2 composites is demonstrated. The hydrogen storage properties and the reaction pathways for hydrogen release from LiBH4x Mg(AlH4)2 composites with x=1/6, 1/4, and 1/2 were systematically investigated. All of the composites exhibit a four‐step dehydrogenation event upon heating, but the pathways for hydrogen desorption/absorption are varied with decreasing LiBH4/Mg(AlH4)2 molar ratios. Thermodynamic and kinetic investigations reveal that different x values lead to different enthalpy changes for the third and fourth dehydrogenation steps and varied apparent activation energies for the first, second, and third dehydrogenation steps. Thermodynamic and kinetic destabilization caused by the presence of Mg(AlH4)2 is likely to be responsible for the different hydrogen desorption/absorption performances of the LiBH4x Mg(AlH4)2 composites.  相似文献   

18.
Efficient hydrogen storage plays a key role in realizing the incoming hydrogen economy. However, it still remains a great challenge to develop hydrogen storage media with high capacity, favourable thermodynamics, fast kinetics, controllable reversibility, long cycle life, low cost and high safety. To achieve this goal, the combination of lightweight materials and nanostructures should offer great opportunities. In this article, we review recent advances in the field of chemical hydrogen storage that couples lightweight materials and nanostructures, focusing on Mg/MgH(2)-based systems. Selective theoretical and experimental studies on Mg/MgH(2) nanostructures are overviewed, with the emphasis on illustrating the influences of nanostructures on the hydrogenation/dehydrogenation mechanisms and hydrogen storage properties such as capacity, thermodynamics and kinetics. In particular, theoretical studies have shown that the thermodynamics of Mg/MgH(2) clusters below 2 nm change more prominently as particle size decreases.  相似文献   

19.
Chemical complex borohydride is a promising hydrogen storage material due to its large gravimetric and volumetric hydrogen capacities. However, the high dehydrogenation temperature and sluggish kinetics still place strong restrictions on its practical application in the hydrogen storage field. In this work, a synergetic approach of partial cation substitution and catalysis is developed to enhance the hydrogen storage properties of LiBH4. The Li/Mg based dual-cation borohydride (LiMg2(BH4)5, LMBH) was successfully synthesized by wet chemical ball milling of LiBH4 and MgCl2. The optimal (LMBH (4.5:1) sample, LiBH4 and MgCl2 in molar ratios of 4.5:1, possesses a maximum hydrogen desorption capacity (11.27 wt%) and the outstanding initial decomposition temperature (~250 °C). Importantly, the LMBH (4.5:1) doped with TiF3 shows a remarkable onset dehydrogenation temperature as low as 97.2 °C, which is about 190 °C lower than that of pristine LiBH4. The LMBH (4.5:1) doped with TiF3 system releases 7.98 wt% H2 within 170 min below 350 °C. And the dehydrogenation product of doped composite can reversibly absorb ~4.72 wt% H2 at a relatively moderate temperature of 280 °C, which is substantially lower than the reversible hydrogen absorption temperature of previous modified borohydride systems. Based on the structural characteristic analyses, the TiF3 reacts with LMBH (4.5:1) to in-situ form actual catalytic components of TiB2 and TiH2 as the actual catalysts for LMBH (4.5:1), resulting in the improved hydrogen re/dehydrogenation properties. The synergetic modification of Li/Mg dual-cation substitution and TiB2/TiH2 catalysis may lead to the development of light-metal borohydrides with outstanding hydrogen storage properties.  相似文献   

20.
Hydrogen storage performances of a Li(2)NH-xMgNH combination system (x = 0, 0.5, 1 and 2) are investigated for the first time. It is found that the hydrogenated samples with MgNH exhibit a significant reduction in the dehydrogenation temperatures. Mechanistic investigations reveal that there is a strong dependence of the hydrogen storage reaction process on the molar ratio between MgNH and Li(2)NH. As a consequence, tuning of thermodynamics is achieved for hydrogen storage in the Li(2)NH-xMgNH system by changing the reaction routes, which is ascertained to be the primary reason for the reduction in the operating temperature for hydrogen desorption. Specifically, it is found that under 105 atm hydrogen (140-280 °C) 5.6 wt% hydrogen is reversibly stored in the Li(2)NH-0.5MgNH combination system, which is greater than in the well-investigated Mg(NH(2))(2)-2LiH system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号