首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
晶体早期生长的研究揭示,在某些体系中,晶体生长可能并不遵循传统路径.借由某些聚合物或生物分子的帮助,无机晶体的前驱体或纳米晶体在生长初期有可能聚集为无序的大块颗粒.这些聚集体表面晶化形成高结晶度高密度的外壳,随后完成从表面到核心的晶化过程.此逆向晶体生长机理在一些诸如沸石、钙钛矿、金属和金属氧化物等无机化合物体系中均已被发现,在其他材料体系里也将得到验证.认识这一新的晶体生长路径将给予我们更多的自由度来实现晶体形态控制,也有助于我们对于许多天然矿物形成机制的理解.本文简要回顾了最近本领域研究中一些典型逆向晶体生长的例子.  相似文献   

2.
In this work, a template-free synthetic approach for generating single-crystalline hollow nanostructures has been described. Using the small optical band-gap cuprous oxide Cu(2)O as a model case, we demonstrate that, instead of normally known spherical aggregates, primary nanocrystalline particles can first self-aggregate into porous organized solids with a well-defined polyhedral shape according to the oriented attachment mechanism, during which chemical conversion can also be introduced. In contrast to the spherical aggregates, where the nanocrystallites are randomly joined together, the Cu(2)O nanocrystallites in the present case are well organized, maintaining a definite geometric shape and a global crystal symmetry. Due to the presence of intercrystallite space, hollowing and chemical conversion can also be carried out in order to create central space and change the chemical phase of nanostructured polyhedrons. It has been revealed that Ostwald ripening plays a key role in the solid evacuation process. Using this synthetic strategy, we have successfully prepared single-crystal-like Cu(2)O nanocubes and polycrystalline Cu nanocubes with hollow interiors. For the first time, we demonstrate that nanostructured polyhedrons of functional materials with desired interiors can be synthesized in solution via a combination of oriented attachment and Ostwald ripening processes.  相似文献   

3.
Correct prediction of the structure and energetics along the reaction pathway of the formation or dissociation of the glycosidic bond in sugar phosphates is crucial for the understanding of catalytic mechanism and for the determination of transition state structures of sugar-phosphate processing enzymes. The performance of seven density functional theory (DFT) methods (BLYP, B3LYP, MPW1PW91, MPW1K, MPWB1K, M05 and M05-2X) and two wave function methods (HF and MP2) was tested using four structural models with the activated sugar-phosphate α-glycosidic linkage. The models were chosen based on the crystal structure of the retaining glycosyltransferase LgtC complex with methyl α-d-galactopyranose diphosphate and its 2-fluoro derivative. Results of the MP2 method were used as a benchmark for the other methods. Two structural trends were observed in the calculations: predicted length of the activated C1-O1 glycosidic bond of 1.49–1.63 Å was significantly larger than values of a standard C1-O1 glycosidic bond in crystal structures of carbohydrates (1.39–1.48 Å), and the calculated value depended on the DFT method used. The MPW1K, M05 and M05-2X functionals provided results in closest agreement with those from the MP2 method, the difference being less than 0.02 Å in the calculated glycosidic bond lengths. On the contrary, the BLYP and B3LYP functionals failed to predict sugar diphosphate in the (-sc) conformation as a stable structure. Instead, the only stationary points localized along the C1-O1 dissociation coordinate were oxocarbenium ions at the distance of approximately 2.8 Å. The M05-2X, MPW1K and MPWB1K functionals gave the most reasonable prediction of the thermochemical kinetic parameters, where the formation of the oxocarbenium ion has a slightly endothermic character (0.4–1.7 kJ mol?1) with an activation barrier of 7.9–9.2 kJ mol?1.  相似文献   

4.
Freeze-fracture and thin-section methods were used to study tight junction formation between confluent H4-II-E hepatoma cells that were plated in monolayer culture in media with and without dexamethasone, a synthetic glucocorticoid. Three presumptive stages in the genesis of tight junctions were suggested by these studies: 1) "formation zones" (smooth P-fracture face ridges deficient in intramembranous particles), apparently matched across a partially reduced extracellular space, develop between adjacent cells; 2) linear strands and aggregates of 9--11 nm particles collect along the ridges of the formation zones. The extracellular space was always reduced when these structures were found matched with pits in gentle E-face depressions; 3) the linear arrays of particles on the ridges associate within the membranes to form the fibrils characteristic of mature tight junctions. The formation zones resemble tight junctions in terms of size, complexity and the patterns of membrane ridges. Although some of the beaded particle specializations may actually be gap junctions, it is unlikely that all can be interpreted in this way. No other membrane structures were detected that could represent developmental stages of tight junctions. Dexamethasone (at 2 x 10(-6)M) apparently stimulated formation of tight junctions. Treated cultures had a greater number of formation zones and mature tight junctions, although no differences in qualitative features of the junctions were noted.  相似文献   

5.
The assembly and complexation of oppositely charged colloids are important phenomena in many natural and synthetic processes. Liposome-nanoparticle assemblies (LNAs) represent an interesting hybrid system that combines "soft" and "hard" colloidal materials. This work describes the formation and characterization of gel-phase LNAs formed by the binding of anionic superparamagnetic iron oxide (SPIO) nanoparticles to cationic dipalmitoylphosphatidylcholine (DPPC)/dipalmitoyltrimethylammonium propane (DPTAP) liposomes. Particles were examined with hydrodynamic diameters below (16 nm) and above (30 nm) the cutoff reported for supported lipid bilayer formation. LNA formation with 16 nm particles was entropically driven and particles bound individually to yield "decorated" structures. In this case, increasing nanoparticle concentration yielded colloidal LNA aggregates and eventual charge inversion. In contrast, LNA formation with 30 nm particles was enthalpically driven, and the nanoparticles aggregated at the bilayer interface. These aggregates led to significant LNA aggregation and large bilayer sheets due to liposome rupture despite minimal charge screening of the liposome surface. In this case SLBs were present, but these structures were not dominant. Differences in LNA structure were also revealed through the lipid phase transition behavior. This work infers size-dependent nanoparticle binding and LNA formation mechanisms that can be used to tailor colloidal and bilayer properties. Analogies are made to polyelectrolyte patch charge heterogeneities and DNA complexation with cationic liposomes.  相似文献   

6.
花生酸单分子膜诱导PbS晶体取向生长的研究   总被引:1,自引:0,他引:1  
以花生酸单分子膜为模板,诱导沉积了PbS半导体纳米粒子,粒径为30~50 nm.实验发现, 由于花生酸单分子膜的诱导作用, 使得PbS晶体在膜上发生取向生长,可以形成三角形、四边形和棒状的PbS纳米粒子.通过改变单分子膜的表面压,考察了表面压对PbS晶体取向生长的影响,结合透射电镜及电子衍射实验,对PbS晶体的生长机制进行了初步的分析和探讨.  相似文献   

7.
Particle formation is the decisive step to control crystal morphology. Besides the classical primary processes, nucleation and molecular growth, the particle size can also increase by aggregation. The special case of self-assembled aggregation leads to the formation of highly ordered particles which often possess a porous internal structure. In the experiments of these studies the particle formation of barium sulfate has been investigated. SEM analysis shows a large variety of growth forms including plate-like, star-like, and spherical particles, whereas TEM exposures reveal the porous internal structure at all investigated supersaturation levels. The pore size and the volume fraction can be influenced by changing the supersaturation ratio. By means of a fast sampling technique in combination with cryo-TEM analysis it has been shown that the particles at the early stages of growth shortly after the beginning of nucleation consist of many small nanocrystallites which have aggregated in a highly ordered manner. The diffraction pattern indicates many small-angle grain boundaries, whereas the particles at the end of the precipitation process are monocrystalline. This leads to the conclusion that barium sulfate grows according to a self-assembled aggregation mechanism followed by a fast recrystallization process.  相似文献   

8.
We here report on the covalent grafting of various phosphated species (phosphoric acid, phenylphosphonic acid, and octyl phosphate) onto the surface of monoclinic zirconia nanoparticles obtained by hydrothermal treatment of zirconium acetate. The initial particles are 60 nm aggregates of nanometric primary grains and present an inner porosity. Small-angle X-ray scattering shows that the high specific area of the colloidal particles (450 m2 x g(-1)) decreases to 150 m2 x g(-1) upon drying. Therefore, phosphated reactants can access the whole internal surface of the aggregates only before drying. The surface of the particles can be covered with functional groups bound through a variable number of Zr-O-P bonds. Several factors probably enhance the reaction between the particles and the phosphates or phosphonates: the large specific area of the particles, a fully accessible porous network, and a large concentration of surface terminal groups. At the same time, the morphology of the particles is well preserved upon grafting. This is due to the good crystallinity of the primary grains that constitute the particles. In addition, the grafting drastically modifies the surface properties of the colloids. For example, the polarizability of the particles decreases in the sequence -POH > as-prepared ZrO2 > -PC6H5 > -POC8H17. Furthermore, the grafting of octyl phosphate allows exclusion of water from pores of 2 nm radius, up to hydrostatic pressures of 20 MPa.  相似文献   

9.
The formation mechanisms of complex BaSO(4) fiber bundles and cones in the presence of polyacrylate sodium salt via a bioinspired approach at ambient temperature in an aqueous environment are reported. These complex organic-inorganic hybrid structures assemble after heterogeneous nucleation of amorphous precursor particle aggregates on polar surfaces, and the crystallization area can be patterned. In contrast to earlier reports, three different mechanisms based on the oriented attachment of nanoparticles were revealed for the formation of typical fibrous superstructures depending on the supersaturation or on the number of precursor particles. (A) High supersaturation (S > 2): large amorphous aggregates stick to a polar surface, form fiber bundles after mesoscopic transformation and oriented attachment, and then form a narrow tip through polymer interaction. (B) Low supersaturation (S = 1.02-2): only a few fibers nucleate heterogeneously from a single nucleation spot, and amorphous particles stick to existing fibers, which results in the formation of a fiber bundle. (C) Vanishing supersaturation (S = 1-1.02): nucleation of a fiber bundle from a single nucleation spot with self-limiting repetitive growth as a result of the limited amount of building material. These growth processes are supported by time-resolved optical microscopy in solution, TEM, SEM, and DLS.  相似文献   

10.
The formation of equilibrium spectrum of particles in a disperse system with the coagulation–fragmentation of aggregates at a steady-state shear flow was analyzed in terms of two-fraction model. It was suggested that an initial dispersed phase contains only small particles coagulating by the Brownian mechanism; the growth of larger aggregates proceeds by the gradient mechanism and is accompanied by the detachment of fragments. Parameters of equilibrium spectrum characterizing average masses and the number of particles in fine and coarse fractions were determined as functions of a flow shear rate, aggregate fractal dimension, parameters of particle interaction in aggregates, and the properties of the initial dispersed phase.  相似文献   

11.
Thermal generation of oxygen and hydroxylated aromatic compounds by hydrogen peroxide, catalyzed by flocculation of titanium dioxide nanocrystallites aqueous suspension upon addition of hydrogen peroxide, is reported. The oxidation involves catalytic cleavage of a peroxide molecule followed by hydroxyl reaction with the organic solutes. The catalytic hydroxylation is associated with formation of TiO(2)-H(2)O(2) aggregates, which occurs within a specific range of [TiO(2)]/[H(2)O(2)] ratio. Comparison of the activation energy to literature values in the absence of nanoparticles indicates that flocculation induces an increase of the rate without decreasing the activation energy. This is, to the best of our knowledge, a unique case of nanoparticles catalysis driven by formation of a three-dimensional structure of the suspended particles.  相似文献   

12.
Hydrous ferric oxides (HFO) are efficient sorbents for inorganic and organic pollutants and therefore have great potentials in environmental science and engineering applications. Freezing and thawing of HFO suspensions leads to the formation of dense HFO aggregates. It facilitates the handling and increases the drying rate of HFO. In this study, we used a combination of pycnometry, gas adsorption (N(2) gas, water vapor), and small-angle neutron scattering (SANS) to characterize the porosity and pore size distribution of dense HFO aggregates formed by freezing dialyzed HFO suspensions at -25 degrees C and thawing them at room temperature. The crystallinity of the HFO, which was a 2-line ferrihydrite, was not affected by this treatment. Wet sieving and laser diffraction analysis showed that the dense HFO aggregates had a unimodal size distribution with an average diameter of 235+/-35 microm. Increasing the freezing rate by cooling with liquid N(2) (-196 degrees C) resulted in much smaller aggregates with an average diameter of 20 microm. Adding NaNO(3) electrolyte to the HFO suspensions prior to freezing also resulted in the formation of smaller aggregates. The dense HFO aggregates formed at -25 degrees C had a porosity of 0.73+/-0.02 ll(-1). SANS revealed a unimodal size distribution of pores, with an average pore diameter of 2.0 nm. The diameter of the HFO crystallites was estimated by transmission electron microscopy to be 1.9+/-0.5 nm. Geometrical considerations taking into account the unit particle and average pore size suggest that the crystallites retain 1-2 layers of hydration water during the coagulation induced by freezing. Analysis by N(2) gas adsorption showed that drying the dense HFO aggregates induced a reduction in porosity by about 25% and shifted the pore size distribution to smaller diameters. Rewetting during water vapor adsorption did not induce significant changes of the aggregate structure. The specific surface area of the dry HFO aggregates was between 320 and 380 m(2)g(-1).  相似文献   

13.
Suspended emulsion polymerization was used to prepare poly(vinyl chloride) (PVC) resin. Fine PVC particleswere formed at low polymerization conversions. The amount of fine panicles decreases as conversion increases anddisappears at conversions greater than 30%. Scanning electron micrographs show that PVC grains are composed of looselycoalesced primary particles, especially for PVC resins prepared in the presence of poly(vinyl alcohol) dispersant. The size ofprimary particles increases and porosity decreases with the increase of conversion. In view of the particle features of PVCresin, a particle formation mechanism including the formation of primary particles and grains is proposed. The formationprocess of primary particles includes the formation of particle nuclei, coalescence of particle nuclei to form primary particles,and growth of primary particles. PVC grains are formed by the coagulation of primary particles. The loose coalescence ofprimary particles is caused by the colloidal stability of primary particles and the low swelling degree of vinyl chloride in the primary particles.  相似文献   

14.
In the suspension polymerization of VCM, insoluble polymer particles are formed inside the monomer droplets. The growth and aggregation of these particles are responsible for important polymer properties, such as porosity. It is well established that the most characteristic polymer particles, the primary particles, are of a narrow distribution with a size (diameter) ranging from 0.10–0.20 m. This work studied the formation of primary particles based on the aggregation phenomena that take place inside a monomer droplet. This was done by formulating a population balance equation, which was based on the following considerations: a) polymerization occurs in both the monomer and the polymer phases; b) there is continuous formation of the basic particles in the monomer phase; c) the growth of the polymer particles occurs as a result of both polymerization in the polymer phase and aggregation of the particles; d) the colloidal properties of the particles that are responsible for the aggregation phenomena were considered to be the net result of attraction and repulsion energies.It was shown that for particles carrying a constant charge it was not possible to predict the formation of primary particles of size 0.10–0.20 m. The particle size distribution had a mode diameter equal to the diameter of the basic particles. Consequently, the particle charge was allowed to vary in a way proportional to the particle radius raised to a power coefficient. For values of the coefficient greater than zero, i. e., when the particle charge increased during polymerization, the aggregation of the basic particles was efficient enough to result in the formation of large primary particles.  相似文献   

15.
This contribution provides the theoretical background for the structure-determining role of hydrogen bonding in the formation of a near-surface layer of titania nanocrystallites, previously revealed by the authors in the investigation of IR experimental spectra of two-component solid mixtures of nanocrystalline titanium dioxide with benzophenone or 4-pentyl-4′-cyanobiphenyl. DFT calculations (B3LYP) in 6-31+G(d) basis set is used to simulate the structure and IR spectra of free molecules of water, 4-pentyl-4′-cyanobiphenyl, benzophenone and their H-complexes formed in the near-surface layers of titania nanocrystallites due to presence of water adsorbed on their surfaces. Using the results of simulation and analysis of IR spectrum bands corresponding to stretching vibrations of polar bonds O-H, C=O, C≡N, the formation mechanism of near-surface layers of titania nanocrystallites in the considered heterogeneous two-component systems is theoretically substantiated: they are formed by hydrogen-bonded complexes involving components of the mixture and water.  相似文献   

16.
The dynamics of aggregation of meso-tetrakis (p-sulfonatofenyl) porphyrin (TPPS4) in function of its concentration, pH and ionic strength was studied by optical absorption, fluorescence and resonance light scattering (RLS) techniques. In the region of pH, where TPPS4 exists in biprotonated form, the addition of NaCl induces the TPPS4 aggregation due to the formation of the "cloud" of counter ions around the TPPS4 molecule thus reducing electrostatic repulsion between the porphyrin molecules. The formation of this "cloud" shifts the pKa value to acid region (from 5.0 in the absence of salt to 4.5 at [NaCl] = 0.4 M), reduces the TPPS4 absorption in all spectral range and quantum yield and lifetime of fluorescence (from 0.27 to 0.17 and from 4.00+/-0.04 to 3.00+/-0.03 ns in the absence of salt and in the presence of NaCl, respectively). The aggregation process involves two successive stages: initially H aggregates are formed, which in time are transformed in J ones. The existence of these two stages was confirmed by the fluorescence and RLS data. The kinetics of the formation of J aggregates is characterized by the induction time t1 and the average growth time t2, which depend on both TPPS4 and salt concentrations. The induction period t1 appears as a result of initial formation of H aggregates and their successive transformation in J ones. At very high TPPS4 concentrations, the J aggregates are united in more complex structures such as hollow cylinders or helixes.  相似文献   

17.
Poly(propylene imine) dendrimers that are modified with long alkyl chains self-assemble to form well-defined aggregates. The geometry and surface chemistry of the dendrimer assemblies can be varied through the addition of surfactants. These dendrimer/surfactant aggregates can be tuned to template the formation of the different phases of calcium carbonate. The use of octadecylamine results in the formation of polyhedral aggregates that become embedded within an amorphous calcium carbonate phase that persists in competition with the thermodynamic product, calcite. In combination with hexadecyltrimethylammonium bromide, small spherical aggregates are formed that induce the formation of vaterite. The use of the negatively charged surfactant SDS results in growth retardation by the Ca(2+)-induced agglomeration of dendrimer/surfactant aggregates into giant spherical particles. Eventually these particles become overgrown by rhombohedral calcite.  相似文献   

18.
探索了一种合成规则的层状双金属氢氧化物(简称LDHs)六角纳米片的新方法,该方法基于传统的共沉淀法,并借鉴了尿素法的优点。 系统研究了沉淀剂、反应溶剂、反应时间和沉淀剂滴加速率对最终得到的粒子结晶度和形貌的影响。 研究结果表明,采用NH4OH为沉淀剂,以乙醇/水混合溶液为溶剂得到的LDHs纳米粒子结晶度高,晶型发育完美,呈现规则的六角片状,单分散性良好,粒径介于100~250 nm之间。 乙醇的加入一方面减慢了NH4OH电离出OH-的速率,降低了溶液过饱和度;另一方面,乙醇分子包裹在LDHs粒子周围,其表面的羟基起到了空间位阻作用,阻止粒子之间的团聚。 最佳反应时间既要保证LDHs晶粒的充分发育和成长,又要防止粒子之间的团聚。反应时间较短(1 h)时,晶粒发育不完全,粒子呈现不规则的六角片形;反应时间较长(4 h)时,LDHs粒子出现了六角片状重叠现象;只有当反应时间适中(3 h),LDHs粒子因晶胞生长充分而粒径分布均匀,并呈现规则六角片状。 沉淀剂滴加速率的不同会改变体系的过饱和度,从而影响LDHs粒子的形貌,滴加速率较低(0.025 mL/s)时,得到的粒子形貌规则、单分散性良好,且随着滴加速率的降低,粒子粒径逐渐增大。  相似文献   

19.
The 3D structure of three individual aggregates composed of 165 nm polystyrene primary particles is revealed nondestructively by hard X-ray phase-contrast synchrotron nanotomography. Three-dimensional image analysis allows us for the first time to obtain the complex inner porosity of the entire aggregate. It is demonstrated that despite their rather compact structure, characterized by a fractal dimension equal to 2.7, the produced aggregates are still porous, with porosity increasing with its size. Generated pores have diameters from 100 nm to 3 μm and are almost completely interconnected.  相似文献   

20.
采用皮-亚分步凝固成膜机理分析了3种不同溶剂对聚偏氟乙烯(PVDF)铸膜液相转化和膜结构的影响,采用浊度法测定铸膜液体系的热力学性质,沉淀速度采用光透射仪测定.结果显示,3种膜的皮层分相主要由热力学性质控制,均发生延时液固分相,生成了相互融合的球粒组成的致密皮层.3体系的亚层分相行为由动力学扩散过程控制;对于二甲基亚砜(DMSO)、N,N-二甲基乙酰胺(DMAc)体系亚层发生瞬时液液分相,结晶化对动力学过程影响小,表现为光透射曲线上分相时间t2短,生成了大孔结构为主的亚层,膜厚度、孔隙率和气通量均高、结晶度低;N,N-二甲基甲酰胺(DMF)体系亚层发生延时液液分相,结晶化对动力学过程影响大,t2长,生成蜂窝状孔结构亚层,其膜厚度、孔隙率和气通量较低,但膜的结晶度高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号