首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A micro scale Timoshenko beam model is developed based on strain gradient elasticity theory. Governing equations, initial conditions and boundary conditions are derived simultaneously by using Hamilton's principle. The new model incorporated with Poisson effect contains three material length scale parameters and can consequently capture the size effect. This model can degenerate into the modified couple stress Timoshenko beam model or even the classical Timoshenko beam model if two or all material length scale parameters are taken to be zero respectively. In addition, the newly developed model recovers the micro scale Bernoulli–Euler beam model when shear deformation is ignored. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Timoshenko beam are solved respectively. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Timoshenko models are large as the beam thickness is comparable to the material length scale parameter. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. In addition, Poisson effect on the beam deflection, rotation and natural frequency possesses an interesting “extreme point” phenomenon, which is quite different from that predicted by the classical Timoshenko beam model.  相似文献   

2.
A microstructure-dependent Timoshenko beam model is developed using a variational formulation. It is based on a modified couple stress theory and Hamilton's principle. The new model contains a material length scale parameter and can capture the size effect, unlike the classical Timoshenko beam theory. Moreover, both bending and axial deformations are considered, and the Poisson effect is incorporated in the current model, which differ from existing Timoshenko beam models. The newly developed non-classical beam model recovers the classical Timoshenko beam model when the material length scale parameter and Poisson's ratio are both set to be zero. In addition, the current Timoshenko beam model reduces to a microstructure-dependent Bernoulli-Euler beam model when the normality assumption is reinstated, which also incorporates the Poisson effect and can be further reduced to the classical Bernoulli-Euler beam model. To illustrate the new Timoshenko beam model, the static bending and free vibration problems of a simply supported beam are solved by directly applying the formulas derived. The numerical results for the static bending problem reveal that both the deflection and rotation of the simply supported beam predicted by the new model are smaller than those predicted by the classical Timoshenko beam model. Also, the differences in both the deflection and rotation predicted by the two models are very large when the beam thickness is small, but they are diminishing with the increase of the beam thickness. Similar trends are observed for the free vibration problem, where it is shown that the natural frequency predicted by the new model is higher than that by the classical model, with the difference between them being significantly large only for very thin beams. These predicted trends of the size effect in beam bending at the micron scale agree with those observed experimentally. Finally, the Poisson effect on the beam deflection, rotation and natural frequency is found to be significant, which is especially true when the classical Timoshenko beam model is used. This indicates that the assumption of Poisson's effect being negligible, which is commonly used in existing beam theories, is inadequate and should be individually verified or simply abandoned in order to obtain more accurate and reliable results.  相似文献   

3.
On the basis of the modified couple stress theory, some analytical results are obtained for vibrational parameters of micro-spinning Rayleigh beams with an axial mass-eccentricity distribution. The modified couple stress theory is a nonclassical continuum theory capable to capture the size effects in small-scale structures. After writing the governing equations of motion, they are transformed to the complex form. Then by utilizing the Galerkin method, analytical expressions for natural frequencies of the micro-spinning beam in forward and backward whirl motions are obtained. Critical speeds are also analytically presented in the two whirl motions for different modes. Moreover, the vibrational amplitude of the micro-spinning beam with axial mass eccentricity distribution is determined. Some numerical results are presented to study the effect of the length scale parameter on the vibrational characteristics.  相似文献   

4.
A microstructure-dependent nonlinear Euler-Bernoulli and Timoshenko beam theories which account for through-thickness power-law variation of a two-constituent material are developed using the principle of virtual displacements. The formulation is based on a modified couple stress theory, power-law variation of the material, and the von Kármán geometric nonlinearity. The model contains a material length scale parameter that can capture the size effect in a functionally graded material, unlike the classical Euler-Bernoulli and Timoshenko beam theories. The influence of the parameter on static bending, vibration and buckling is investigated. The theoretical developments presented herein also serve to develop finite element models and determine the effect of the geometric nonlinearity and microstructure-dependent constitutive relations on post-buckling response.  相似文献   

5.
In this paper, a linear theory for the analysis of beams based on the micropolar continuum mechanics is developed. Power series expansions for the axial displacement and micro-rotation fields are assumed. The governing equations are derived by integrating the momentum and moment of momentum equations in the micropolar continuum theory. Body couples and couple stresses can be supported in this theory. After some simplifications, this theory can be reduced to the well-known Timoshenko and Euler–Bernoulli beam theories. The nature of flexural and longitudinal waves in the infinite length micropolar beam has been investigated. This theory predicts the existence of micro-rotational waves which are not present in any of the known beam theories based on the classical continuum mechanics. Also, the deformation of a cantilever beam with transverse concentrated tip loading has been studied. The pattern of deflection of the beam is similar to the classical beam theories, but couple stress and micro-rotation show an oscillatory behavior along the beam for various loadings.  相似文献   

6.
A size-dependent Reddy–Levinson beam model is developed based on a strain gradient elasticity theory. Governing equations and boundary conditions are derived by using Hamilton’s principle. The model contains three material length scale parameters, which may effectively capture the size effect in micron or sub-micron. This model can degenerate into the modified couple stress model or even the classical model if two or all material length scale parameters are taken to be zero respectively. In addition, the present model recovers the micro scale Timoshenko and Bernoulli–Euler beam models based on the same strain gradient elasticity theory. To illustrate the new model, the static bending and free vibration problems of a simply supported micro scale Reddy–Levinson beam are solved respectively; the results are compared with the reduced models. Numerical results reveal that the differences in the deflection, rotation and natural frequency predicted by the present model and the other two reduced Reddy–Levinson models are getting larger as the beam thickness is comparable to the material length scale parameters. These differences, however, are decreasing or even diminishing with the increase of the beam thickness. This study may be helpful to characterize the mechanical properties of small scale beam-like structures for a wide range of potential applications.  相似文献   

7.
A micro-scale free vibration analysis of composite laminated Timoshenko beam (CLTB) model is developed based on the new modified couple stress theory. In this theory, a new anisotropic constitutive relation is defined for modeling the CLTB. This theory uses rotation–displacement as dependent variable and contains only one material length scale parameter. Hamilton’s principle is employed to derive the governing equations of motion and boundary conditions. This new model can be reduced to composite laminated Bernoulli–Euler beam model of the couple stress theory. An example analysis of free vibration of the cross-ply simply supported CLTB model is adopted, and an explicit expression of analysis solution is given. Additionally, the numerical results show that the present beam models can capture the scale effects of the natural frequencies of the micro-structure.  相似文献   

8.
In this paper, a new theoretical model is developed, based on the modified couple stress theory, for the vibration analysis of fluid-conveying microtubes by introducing one internal material length scale parameter. Using Hamilton's principle, the equations of motion of fluid-conveying microtubes are derived. After discretization via the Differential Quadrature Method (DQM), the analytical model exhibits some essential vibration characteristics. For a microtube in which both ends are supported, it is found that the natural frequencies decrease with increasing internal flow velocities. It is also shown that the microtube will become unstable by divergence at a critical flow velocity. More significantly, when the outside diameter of the microtube is comparable to the material length scale parameter, the natural frequencies obtained using the modified couple stress theory are much larger than those obtained using the classical beam theory. It is not surprising, therefore, that the critical flow velocities predicted by the modified couple stress theory are generally higher than those predicted by the classical beam theory.  相似文献   

9.
The present study proposes a nonclassical Kirchhoff plate model for the axisymmetrically nonlinear bending analysis of circular microplates under uniformly distributed transverse loads. The governing differential equations are derived from the principle of minimum total potential energy based on the modified couple stress theory and von Kármán geometrically nonlinear theory in terms of the deflection and radial membrane force, with only one material length scale parameter to capture the size-dependent behavior. The governing equations are firstly discretized to a set of nonlinear algebraic equations by the orthogonal collocation point method, and then solved numerically by the Newton–Raphson iteration method to obtain the size-dependent solutions for deflections and radial membrane forces. The influences of length scale parameter on the bending behaviors of microplates are discussed in detail for immovable clamped and simply supported edge conditions. The numerical results indicate that the microplates modeled by the modified couple stress theory causes more stiffness than modeled by the classical continuum plate theory, such that for plates with small thickness to material length scale ratio, the difference between the results of these two theories is significantly large, but it becomes decreasing or even diminishing with increasing thickness to length scale ratio.  相似文献   

10.
分析了三维Cosserat连续体理论中的应力应变特征,推导了三维Cosserat连续体的有限元方程,基于ABAQUS计算软件提供的用户单元子程序(UEL)接口编写了弹性Cosserat连续体三维20节点有限元程序,并分析了微悬臂梁自由端的挠度问题和微杆扭转问题。通过与基于经典连续体理论的解析解及有限元数值计算结果进行比较,表明所发展的三维Cosserat连续体有限元能有效地模拟微结构尺寸相关效应问题,即随着微结构尺寸与材料内部长度参数的接近,基于Cosserat连续体有限元分析得到的微梁的挠度以及微杆的转角与经典连续体的解析解及有限元解相比越来越小;反之,Cosserat连续体有限元的计算结果与经典连续体的解析解及有限元数值解较为一致。  相似文献   

11.
In this study, the dynamic bifurcation of a viscoelastic micro rotating shaft is investigated. The non-classical theory (the modified couple stress theory) and the Kelvin Voigt model are used for modeling the viscoelastic micro shaft. The transverse equations of motion are derived using the variational approach. The reduced order model of the system is obtained by the Galerkin method. Using the Routh–Hurwitz criteria the stability regions of the system are extracted in which the effect of the length scale parameter is significant. Using the center manifold theory and the normal form method the double zero eigenvalue bifurcation is analyzed. The results show that the internal and external damping coefficients, the rotational speed and the material length scale parameter influence the critical speed, amplitude, and phase of a non-trivial solution, and radius of limit cycle (periodic solution). Also, it is seen that by increasing the dimensionless length scale parameter (material length scale per radius of the shaft) the radius of the limit cycle is decreased, whereas the critical rotational speed and the rate of the phase are increased. However, the radius of the limit cycle concerning the classical theory is higher than that of regarding the modified couple stress theory. Furthermore, with an increase of the external damping coefficient the radius of the limit cycle is linearly decreased; however, the critical speed of the system is increased. Additionally, by decreasing length scale parameter the results of the modified couple stress theory approach the classical theory ones.  相似文献   

12.
By incorporating the strain gradient elasticity into the classical Bernoulli-Euler beam and Timoshenko beam models, the size-dependent characteristics of wave propagation in micro/nanobeams is studied. The formulations of dispersion relation are explicitly derived for both strain gradient beam models, and presented for different material length scale parameters (MLSPs). For both phenomenological sizedependent beam models, the angular frequency, phase velocity and group velocity increase with increasing wave number. However, the velocity ratios approach different values for different beam models, indicating an interesting behavior of the asymptotic velocity ratio. The present theory is also compared with the nonlocal continuum beam models.  相似文献   

13.
In this study, the static pull-in instability of nanocantilever beams immersed in a liquid electrolyte is theoretically investigated. In modeling the nanocantilever beam, the effects of van der Waals forces, elastic boundary condition and size dependency are considered. The modified couple stress theory, containing material length scale parameter, is used to interpret the size effect which appears in micro/nanoscale structures. The modified Adomian decomposition (MAD) method is used to gain an approximate analytical expression for the critical pull-in parameters which are essential for the design of micro/nanoactuators. The results show that the beam can deflect upward or downward, based on the values of the non-dimensional parameters. It is found that the size effect greatly influences the beam deflection and is more noticeable for small thicknesses. Neglecting size effect overestimates the deflection of the nanobeam. The findings reveal that the increase of ion concentration increases the pull-in voltage but decreases the pull-in deflection. Furthermore, an increase in ion concentration increases the influence of size-dependent effect on pull-in voltage.  相似文献   

14.
On the basis of the modified strain gradient elasticity theory, the free vibration characteristics of curved microbeams made of functionally graded materials (FGMs) whose material properties vary in the thickness direction are investigated. A size-dependent first-order shear deformation beam model is developed containing three internal material length scale parameters to incorporate small-scale effect. Through Hamilton’s principle, the higher-order governing equations of motion and boundary conditions are derived. Natural frequencies of FGM curved microbeams corresponding to different mode numbers are evaluated for over a wide range of material property gradient index, dimensionless length scale parameter and aspect ratio. Moreover, the results obtained via the present non-classical first-order shear deformation beam model are compared with those of degenerated beam models based on the modified couple stress and the classical theories. It is found that the difference between the natural frequencies predicted by the various beam models is more significant for lower values of dimensionless length scale parameter and higher values of mode number.  相似文献   

15.
唐媛  卿海 《应用力学学报》2020,(2):785-792,I0023
基于修正偶应力理论及表面弹性理论,本文提出了一种新的双曲线剪切变形梁模型,用于均匀微尺度梁的静态弯曲分析。该理论可以直接利用本构关系获得横向剪切应力,满足梁顶部和底部的无应力边界条件,避免了引入剪切修正因子。根据广义Young-Laplace方程建立了梁的内部与表面层的应力连续性条件,单一的变量场可以描述梁的位移模式。通过在位移场中考虑表面层厚度以及表面层的应力连续条件,可以使新模型能够更准确地预测微尺寸和表面能相关的尺度效应。通过Hamilton原理推导出了梁的控制方程和边界条件。应变能除了考虑经典弹性理论,还要考虑微结构效应和表面能。Navier-type的解析解适用于简支边界条件,而基于拉格朗日插值的微分求积法(DQEM)可以研究在不同边界条件下的力学响应。把该数值解与Navier方法得出的解析解作了对比,得出:微尺度梁在考虑表面能或微尺寸效应、不同载荷和梁高变化下的响应一致;当不考虑微结构相关性和表面能效应时,该模型退化为经典的欧拉梁模型。  相似文献   

16.
The common approach currently used in the aircraft structural analysis is the finite element method. NASA's research in computational structures technology (CST) is helping to develop the finite element analysis to a new stage, although the significant limitations still exist. The elements used in the finite element method are usually void of dynamics. The consequence is that hundreds and thousands of elements are needed to represent large flexible aircraft structures in order to acquire analytical accuracy. To avoid the large dimensionality the current practice is to reduce the order of the model for structural system identification and control synthesis. This approximation, however, can lead to system instability due to the dynamics which are ignored.In contrast, distributed parameter modeling seems to offer a viable alternative to the finite element approach for modeling large flexible aerospace structures. Distributed parameter models have the advantage of improved accuracy, reduced number of modal parameters, and the avoidance of modal order reduction. Most of the effort on the continuum modeling so far is contributed to the beam-like structures which are composed of beams, tethers and rigid bodies. For the aircraft structural analysis, however, another important type of structural elements is plate. The principle of the monocoque or semi-monocoque type of aircraft construction is fundamentally the use of a thin-walled tube to carry compression, tension, shear, and bending. It is necessary, therefore, to expand the continuum modeling methodology to the plate-like structures to satisfy the requirement in the aircraft structural analysis, especially for the monocoque structures.This paper has developed a continuum modeling algorithm for the identification of dynamic properties of plate-like structures. A closed-form solution of the Timoshenko plate equation consistent with the maximum likelihood estimator has been derived. The closed-form expressions of the gradient functions have thereby been resulted from the solution of the partial differential equation. The proposed distributed parameter model involves far fewer unknown parameters than independent modal characteristics for finite element models. Illustration of this approach is given by a computer simulation which shows that the estimated results by using continuum model are reasonably accurate compared with the theoretical results.  相似文献   

17.
通过铁木辛柯梁理论分析了反向均布表面剪应力——等效均匀分布力偶作用下的等截面均质细长梁挠度和应力分布规律,并与有限元法的计算结果对比发现:当边界条件中剪力不为零时,弯曲挠度和正应力分析必须考虑剪力的影响,即Euler梁理论不能满足分析的要求;若存在剪力为零边界时,可使用Euler梁分析弯曲挠度和正应力;剪应力分布向通常规律一样,仍沿高度方向呈抛物线分布,即使对于剪力为零的横截面也可能存在剪应力,这是由于表面剪应力的影响使得梁的上下表面存在剪应力,并且剪应力在横截面内正负可以发生变化。  相似文献   

18.
A size-dependent model for electrostatically actuated microbeam-based MEMS (micro-electro-mechanical systems) with piezoelectric layers attached is developed based on a modified couple stress theory. By using Hamilton's principle, the nonlinear differential governing equation and boundary conditions of the MEM structure are derived. In the newly developed model, the residual stresses, fringing-field and axial stress effects are considered for the fixed–fixed microbeam with piezoelectric layers. The results of the present model are compared with those from the classical model. The results show the size effect becomes prominent if the beam dimension is comparable to the material length scale parameter (MLSP). The effects of MLSP, the residual stresses and axial stress on the pull-in voltage are also studied. The study may be helpful to characterize the mechanical and electrostatic properties of small size MEMS, or guide the design of microbeam-based devices for a wide range of potential applications.  相似文献   

19.
This paper focuses on the buckling behaviors of a micro-scaled bi-directional functionally graded (FG) beam with a rectangular cross-section, which is now widely used in fabricating components of micro-nano-electro-mechanical systems (MEMS/NEMS) with a wide range of aspect ratios. Based on the modified couple stress theory and the principle of minimum potential energy, the governing equations and boundary conditions for a micro-structure-dependent beam theory are derived. The present beam theory incorporates different kinds of higher-order shear assumptions as well as the two familiar beam theories, namely, the Euler-Bernoulli and Timoshenko beam theories. A numerical solution procedure, based on a generalized differential quadrature method (GDQM), is used to calculate the results of the bi-directional FG beams. The effects of the two exponential FG indexes, the higher-order shear deformations, the length scale parameter, the geometric dimensions, and the different boundary conditions on the critical buckling loads are studied in detail, by assuming that Young’s modulus obeys an exponential distribution function in both length and thickness directions. To reach the desired critical buckling load, the appropriate exponential FG indexes and geometric shape of micro-beams can be designed according to the proposed theory.  相似文献   

20.
基于欧拉梁理论推导了两自由度梁的常规态型近场动力学(Peridynamics,PD)模型,并提出一种新的自由边界条件施加方法,对不同边界条件的PD梁进行了模态分析,与局部梁的有限元结果进行了对比,验证了模型的收敛性,分析了PD非局部参数对固有频率的影响.结果表明,当近场作用域内物质点密度较小时,PD梁模型非局部性较弱,...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号