首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Formation theory concerns the modification of the geometric configuration of an elastic structure by means of attached and/or embedded actuators. In this paper we consider "volume" type actuation, which involves application of an isotropic expansive/contractive stress to the elastic medium. The question of "formability", i.e., whether or not a given modified geometric configuration for the elastic body can be achieved with actuation of this type, is considered at length, in both the two- and three-dimensional contexts, along with related questions of optimal formability, expressed in terms of the L2 norm of the volume controller employed. In two dimensions, with the aid of the Airy "stress" function, we establish connections between optimal formation, in the "L"2 norm sense, and the standard theory of conformal mapping of simply-connected regions in the complex plane. Further results are presented for multiply-connected domains, including a complete discussion of the case of an annulus.  相似文献   

2.
We investigate Hopf bifurcations in a delayed Nicholson’s blowflies equation of neutral type, derived from the Gurtin–MacCamy model. A key parameter that determines the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived. Global extension of local Hopf branches is established by combining a global Hopf bifurcation theorem with a Bendixson criterion for higher dimensional ordinary differential equations. We show that a branch of slowly varying periodic solutions and a branch of fast oscillating periodic solutions coexist for all large delays.  相似文献   

3.
Alexandrov  S. 《Meccanica》1999,34(5):349-356
Using a simple example, the rotation of a rigid cone in rigid/plastic hardening material, the paper shows a qualitative difference between the solutions for two groups of hardening laws. The first group includes hardening laws with no saturation stress. In this case the solution under sticking conditions exists at any rotation angle of the cone up to infinity. The second group includes hardening laws with a saturation stress. For such laws the solution exists up to a finite value of the rotation angle. Once this angle has been reached, the solution breaks down. At the beginning of the process the behavior of the solution for both groups of hardening materials is similar. However, at the final stage the behavior of rigid/plastic hardening materials of the second group is similar to the behavior of rigid perfectly plastic materials. A specific hardening law with a saturation stress is applied to illustrate the general solution and the restrictions imposed by this law, and a priori specified interfacial law (sticking) on existence of the solution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This paper is concerned with the linear theory of anisotropic and inhomogeneous Cosserat elastic shells. We establish the inequalities of Korn’s type which hold on Cosserat surfaces. Using these inequalities, we prove the existence of the solution to the variational equations in the elastostatics of Cosserat shells. For the dynamic problems, we employ the semigroup of linear operators theory to obtain the existence, uniqueness and continuous dependence of solution.   相似文献   

5.
In this paper we establish, using variational methods, the existence and multiplicity of weak solutions for a general class of quasilinear problems involving \(p(\cdot )\)-Laplace type operators, with Dirichlet boundary conditions involving variable exponents without Ambrosetti and Rabinowitz (A-R) type growth conditions, namely
$$\begin{aligned} \left\{ \begin{array}{rcll} -{\text {div}}(a(|\nabla u|^{p(x)})|\nabla u|^{p(x)-2}\nabla u)&{}=&{}\lambda f(x,u) &{} \text{ in } \Omega ,\\ u&{}=&{}0 &{} \text{ on } \partial \Omega . \end{array} \right. \end{aligned}$$
By different types of versions of the Mountain Pass Theorem with Cerami condition, as well as, the Fountain and Dual Theorem with Cerami condition, we obtain some existence of weak solutions for the above problem under some considerations. Moreover, we show that the problem treated has at least one nontrivial solution for any parameter \(\lambda >0\) small enough, and also that the solution blows up, in the Sobolev norm, as \(\lambda \rightarrow 0^{+}.\) Finally, by imposing additional hypotheses on the nonlinearity \(f(x,\cdot ),\) we get the existence of infinitely many weak solutions by using the Genus Theory introduced by Krasnoselskii.
  相似文献   

6.
7.
This work studies the response of bodies governed by dipolar gradient elasticity to concentrated loads. Two-dimensional configurations in the form of either a half-space (Flamant–Boussinesq type problem) or a full-space (Kelvin type problem) are treated and the concentrated loads are taken as line forces. Our main concern is to determine possible deviations from the predictions of plane-strain/plane-stress classical linear elastostatics when a more refined theory is employed to attack the problems. Of special importance is the behavior of the new solutions near to the point of application of the loads where pathological singularities and discontinuities exist in the classical solutions. The use of the theory of gradient elasticity is intended here to model material microstructure and incorporate size effects into stress analysis in a manner that the classical theory cannot afford. A simple but yet rigorous version of the generalized elasticity theories of Toupin (Arch. Ration. Mech. Anal. 11:385–414, 1962) and Mindlin (Arch. Ration. Mech. Anal. 16:51–78, 1964) is employed that involves an isotropic linear response and only one material constant (the so-called gradient coefficient) additional to the standard Lamé constants (Georgiadis et al., J. Elast. 74:17–45, 2004). This theory, which can be viewed as a first-step extension of the classical elasticity theory, assumes a strain-energy density function, which besides its dependence upon the standard strain terms, depends also on strain gradients. The solution method is based on integral transforms and is exact. The present results show departure from the ones of the classical elasticity solutions (Flamant–Boussinesq and Kelvin plane-strain solutions). Indeed, continuous and bounded displacements are predicted at the points of application of the loads. Such a behavior of the displacement fields is, of course, more natural than the singular behavior present in the classical solutions.   相似文献   

8.
We consider a generalised Gause predator–prey system with a generalised Holling response function of type III: . We study the cases where b is positive or negative. We make a complete study of the bifurcation of the singular points including: the Hopf bifurcation of codimensions 1 and 2, the Bogdanov–Takens bifurcation of codimensions 2 and 3. Numerical simulations are given to calculate the homoclinic orbit of the system. Based on the results obtained, a bifurcation diagram is conjectured and a biological interpretation is given.   相似文献   

9.
We study a variational model from micromagnetics involving a nonlocal Ginzburg–Landau type energy for \({{\mathbb S}^{1}}\)-valued vector fields. These vector fields form domain walls, called Néel walls, that correspond to one-dimensional transitions between two directions within the unit circle \({{\mathbb S}^{1}}\). Due to the nonlocality of the energy, a Néel wall is a two length scale object, comprising a core and two logarithmically decaying tails. Our aim is to determine the energy differences leading to repulsion or attraction between Néel walls. In contrast to the usual Ginzburg–Landau vortices, we obtain a renormalised energy for Néel walls that shows both a tail–tail interaction and a core–tail interaction. This is a novel feature for Ginzburg–Landau type energies that entails attraction between Néel walls of the same sign and repulsion between Néel walls of opposite signs.  相似文献   

10.
We study the values e σ(f) of the best approximation of integrals of functions from the spaces L p (A, dμ) by integrals of rank σ. We determine the orders of the least upper bounds of these values as σ → ∞ in the case where the function ? is the product of two nonnegative functions one of which is fixed and the other varies on the unit ball U p (A) of the space L p (A, dμ). We consider applications of the obtained results to approximation problems in the spaces S p ? .  相似文献   

11.
The dynamics of a diffusive predator–prey system with Holling type-III functional response subject to Neumann boundary conditions is investigated. The parameter region for the stability and instability of the unique constant steady state solution is derived, and the existence of time-periodic orbits and non-constant steady state solutions are proved by bifurcation method and Leray–Schauder degree theory. The effect of various parameters on the existence and nonexistence of spatiotemporal patterns is analyzed. These results show that the impact of Holling type-III response essentially increases the system spatiotemporal complexity.  相似文献   

12.
An analytical solution for the self-similar stage in the problem of gravity-induced turbulent mixing in a light (heavy) layer is obtained on the basis of the kε model equations. The solution obtained is compared with the results of a numerical investigation of the problem using both three-dimensional direct numerical simulation and the kε model. The calculations were performed using the two- and three-dimensional versions of the EGAK method. The results of all the calculations and the available experimental data are in reasonable agreement.  相似文献   

13.
The y-nonlocal Davey–Stewartson II equation is an extension of the usual DS II equation involving a partially parity-time-symmetric potential only with respect to the spatial variable y. By using the Hirota bilinear method, families of n-order rational solutions are obtained, which include lumps in the (xy)-plane and the (yt)-plane, growing-and-decaying line waves in the (xt)-plane, and hybrid solutions of interacting line rogue waves and lumps in the (xy)-plane.  相似文献   

14.
We consider ω-minima of convex variational integrals in the vectorial case n,N≥2, and we provide estimates for the Hausdorff dimension of their singular sets.  相似文献   

15.
The purpose of this paper is to study boundary value problems of Robin type for the Brinkman system and a semilinear elliptic system, called the Darcy–Forchheimer–Brinkman system, on Lipschitz domains in Euclidean setting. In the first part of the paper, we exploit a layer potential analysis and a fixed point theorem to show the existence and uniqueness of the solution to the nonlinear Robin problem for the Darcy–Forchheimer–Brinkman system on a bounded Lipschitz domain in \({\mathbb{R}^n}\) \({(n \in \{2,3\})}\) with small data in L 2-based Sobolev spaces. In the second part, we show an existence result for the mixed Dirichlet–Robin problem for the same semilinear Darcy–Forchheimer-Brinkman system on a bounded creased Lipschitz domain in \({\mathbb{R}^3}\) with small L 2-boundary data. We also study mixed Dirichlet–Robin problems and boundary value problems of mixed Dirichlet–Robin and transmission type for Brinkman systems on bounded creased Lipschitz domains in \({\mathbb{R}^n}\) (n ≥ 3). Finally, we show the well-posedness of the Navier problem for the Brinkman system with boundary data in some L 2-based Sobolev spaces on a bounded Lipschitz domain in \({\mathbb{R}^3}\) .  相似文献   

16.
Among many presumed-shape pdf approaches for modeling non-premixed turbulent combustion, the presumed β-function pdf is widely used in the literature. However, numerical integration of the β-function pdf may encounter singularity difficulties at mixture fraction values of Z = 0 or 1. To date, this issue has been addressed by few publications. The present study proposes the Piecewise Integration Method (PIM), an efficient, robust and accurate algorithm to overcome these numerical difficulties with the added benefit of improving computational efficiency. Comparison of this method to the existing numerical integration methods shows that the PIM exhibits better accuracy and greatly increases computational efficiency. The PIM treatment of the β-function pdf integration is first applied to the Burke–Schumann solution in conjunction with the k − ε turbulence model to simulate a CH4/H2 bluff-body turbulent flame. The proposed new method is then applied to the same flow using a more complex combustion model, the laminar flamelet model. Numerical predictions obtained by using the proposed β-function pdf integration method are compared to experimental values of the velocity field, temperature and species mass fractions to illustrate the efficiency and accuracy of the present method.  相似文献   

17.
An analytical framework is developed for passing to the homogenisation limit in (not necessarily convex) variational problems for composites whose material properties oscillate with a small period ε and that exhibit high contrast of order \({\varepsilon^{-1}}\) between the constitutive, “stress-strain”, response on different parts of the period cell. The approach of this article is based on the concept of “two-scale Γ-convergence”, which is a kind of “hybrid” of the classical Γ-convergence (De Giorgi and Franzoni in Atti Accad Naz Lincei Rend Cl Sci Fis Mat Natur (8)58:842–850, 1975) and the more recent two-scale convergence (Nguetseng in SIAM J Math Anal 20:608–623, 1989). The present study focuses on a basic high-contrast model, where “soft” inclusions are embedded in a “stiff” matrix. It is shown that the standard Γ-convergence in the L p -space fails to yield the correct limit problem as \({\varepsilon \to 0,}\) due to the underlying lack of L p -compactness for minimising sequences. Using an appropriate two-scale compactness statement as an alternative starting point, the two-scale Γ-limit of the original family of functionals is determined via a combination of techniques from classical homogenisation, the theory of quasiconvex functions and multiscale analysis. The related result can be thought of as a “non-classical” two-scale extension of the well-known theorem by Müller (Arch Rational Mech Anal 99:189–212, 1987).  相似文献   

18.
This work investigates the adaptive QS synchronization of non-identical chaotic systems with unknown parameters. The sufficient conditions for achieving QS synchronization of two different chaotic systems (including different dimensional systems) are derived, based on Lyapunov stability theory. By the adaptive control technique, the control laws and the corresponding parameter update laws are proposed such that the non-identical chaotic systems are to have QS synchronization. Finally, four illustrative numerical simulations are also given to demonstrate the effectiveness of the proposed scheme.  相似文献   

19.
The possibility of using different times between laser pulses (Δt) in a PIV (Particle Image Velocimetry) measurement of the same real flow field for error assessment has already been proposed by the authors in a recent paper Nogueira et al. (Meas Sci Technol 20, 2009). It is a simple procedure that is available with the usual PIV setup. In that work, peak locking was considered basically as a bias error. Later measurements indicated that, using appropriate processing algorithms, this error is not the main peak-locking effect. Scenarios with the rms (root mean square) error due to peak locking as the most relevant contribution are more common than initially expected and require a differentiated approach. This issue is relevant due to the impact of the rms error in the evaluation of flow quantities like turbulent kinetic energy. The first part of this work is centred on showing that peak-locking error in PIV is not always a measurement bias towards the closest pixel integer displacement. Insight in the subject indicates that this is the case only for algorithm-induced peak locking. The peak locking coming out of image acquisition limitations (i.e. resolution) is not ‘a priory’ biased. It is a random error with a peculiar probability density function. Discussion on the subject is offered, and a particular approach to use a simple multiple Δt strategy to asses this error is proposed. The results reveal that in real images where amplitude of the peak-locking bias error is assessed to be as small as 0.02 pixels, rms errors can be in the order of 0.1 pixels. As PIV approaches maturity, providing a quantitative confidence interval by estimating measurement error seems essential. The method developed is robust enough to quantify these values in the presence of turbulence with rms up to ~0.6 pixels. This proposal constitutes a relevant step forward from the traditional histogram-based considerations that only reveal whether strong peak-locking error is present or not, without any information on its magnitude or whether its origin is bias or rms.  相似文献   

20.
We derive linearized theories from nonlinear elasticity theory for multiwell energies. Under natural assumptions on the nonlinear stored energy densities, the properly rescaled nonlinear energy functionals are shown to Γ-converge to the relaxation of a corresponding linearized model. Minimizing sequences of problems with displacement boundary conditions and body forces are investigated and found to correspond to minimizing sequences of the linearized problems. As applications of our results we discuss the validity and failure of a formula that is widely used to model multiwell energies in the regime of linear elasticity. Applying our convergence results to the special case of single well densities, we also obtain a new strong convergence result for the sequence of minimizers of the nonlinear problem.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号