首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The modifying effect of Al2O3, Al2O3 · CeO2, ZrO2, ZrO2 · Y2O3 nanopowders on the photoluminescence spectra of ZnO powder in the 360–660 nm range is investigated. It is found that the introduction of nanoparticles causes a decrease in the ultraviolet band intensity and an increase in the visual spectral band intensity. The change in the intensity of elementary components of the visible range band during modification seems to be explained by the emergence of oxygen and zinc vacancies (V O+ and V Zn) and interstitial oxygen ions (O i ).  相似文献   

2.
One-dimensional (1D) Gd2O3:Eu3+ nano-rods and micro-rods were prepared using a facile sol-gel precipitation method, without a template and with a post-growth heat treatment in air. Based on scanning electron microscopy (SEM) and X-ray diffraction (XRD) data, hexagonal Gd(OH)3:Eu3+ micro-rods, 60∼90 nm in diameter and 700 nm to 1 μm in length, were synthesized and then transformed by calcining (800°C, 2 hr) to cubic Gd2O3:Eu3+ with the same morphology and dimensions. Nano-rods of Eu3+ doped Gd(OH)3 and calcined Gd2O3, 60∼90 nm diameter and 150∼300 nm length, were prepared by adding polyethylene glycol (PEG) as a capping agent during the sol-gel synthesis. Photoluminescence (PL) spectra exhibited the 5D07F2 transitions of Eu3+ at 612 and 627 nm from excitation at 280 nm. Photoluminescence excitation (PLE) data showed that a small fraction of PL from Eu3+ resulted from direct excitation, but most PL resulted from the oxygen to europium charge-transfer band (CTB) between 250 and 280 nm.  相似文献   

3.
We have measured the UV absorption spectra of photothermorefractive glasses of the system Na2O-ZnO-Al2O3-NaF-SiO2 doped by cerium oxide in the range of (2.8–5.0) × 104 cm−1 (360–200 nm). The spectra have been processed by the method of dispersion analysis based on the analytical convolution model for the complex dielectric function of glasses. We show that the absorption band centered at 3.3 × 104 cm−1 (∼303 nm) that is attributed to the transition 2F 5/2 → 5d in the Ce3+ ion, is an envelope of three spectral components. The broad absorption range (3.5–4.7) × 104 cm−1 (200–270 nm) that is commonly interpreted as a charge transfer band of the Ce(IV) valence state, is an envelope of at least three spectral components.  相似文献   

4.
A. Holt  T. Norby  R. Glenne 《Ionics》1999,5(5-6):434-443
The non-stoichiometry and chemical diffusion coefficient of SrFe1−xCoxO3-δ have been measured by steady state and transient thermogravimetry in the temperature range 750–1200 °C at different oxygen partial pressures. At high oxygen partial pressures, the chemical diffusion coefficient was in the range 1·10−4 – 7·10−4 cm2/s. This, combined with high concentration of disordered vacancies make these materials perhaps the fastest solid oxygen ion diffusers known at high temperatures and high oxygen partial pressures. However, due to the high concentration of defects in SrFe1−xCoxO3-δ the compound transforms from a cubic (disordered) perovskite to a brownmillerite type of structure under reduced oxygen partial pressures below approx. 900 °C. Due to this phase transition, the mobility of oxygen vacancies in SrFe1−xCoxO3-δ decreases up to about an order of magnitude at 850 °C. We also observe an ordering effect at 1000 °C, although smaller in size, and this is suggested to be due to short range ordering of four-coordinated polyhedra of Fe. For possible use as oxygen separation membranes, phase stability against sulphur and carbon containing atmospheres is also discussed with respect to the formation of carbonates and sulphates. Paper presented at the 6th Euroconference on Solid State Ionics, Cetraro, Calabria, Italy, Sept. 12–19, 1999.  相似文献   

5.
The luminescent properties of Eu3+ and Eu2+ ions in sodium pyrophosphate, Na4P2O7, have been studied. The excitation spectrum of the Eu3+ emission in Na4P2O7 consists of several sets of bands in the range 280–535 nm due to 4f–4f transitions of Eu3+ ions and a broad band with a maximum at about 240 nm interpreted to be due to a charge transfer (CT) transition from oxygen 2p states to empty states of the Eu3+ 4f6-configuration. Although the CT band energy is large enough, the quantum efficiency (η) of the Eu3+ emission in Na4P2O7 under CT excitation was estimated to be very low (η ≤ 0.01). In terms of a configurational coordinate model, this fact is interpreted as a result of the high efficiency of a radiationless relaxation from the CT state to the 7F0 ground state of Eu3+ ions occupying sodium sites in Na4P2O7. A strong reducing agent is required in order to stabilize Eu2+ ions in Na4P2O7 during the synthesis. Several nonequivalent Eu2+ luminescence centers in Na4P2O7 were found.  相似文献   

6.
We have studied the luminescent properties of Eu2+/3+ and Yb2+ ions in strontium hexaborate SrB6O10 for excitation in the 120–400 nm region. The luminescence spectra of Ln2+ ions in SrB6O10 consist of overlapping bands in the 370–520 nm region, due to 5d → 4f transitions at several nonequivalent centers. In the excitation spectra, besides the bands associated with 4f → 5d transitions in the Ln2+ ions, we also observe a band in the 135–160 nm region due to the transitions O(2p) → B(2s,2p) within the borate anions. The luminescence of the Eu3+ ions is excited most efficiently in the region of the Eu3+ charge transfer band (λmax = 226 nm). The results obtained are compared with data for Ln in other strontium borates. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 6, pp. 770–774, November–December, 2006.  相似文献   

7.
We present the characteristics of an optical parametric oscillator based on a KTP crystal, pumped with noncritical phase matching by a pulsed Ti3+:Al2O3 laser, tunable in the range 677–970 nm. Tunable generation of signal and idler waves is obtained in the ranges 1030–1390 nm and 2690–3050 nm respectively. The efficiency of conversion of the pump to the signal wave is ≈23%, which for pulses of duration ≈8 nsec ensures an energy in the range 1.0–11.5 mJ. The width of the emission spectrum for the signal wave is within the range 0.8–1.8 nm and is predominantly determined by the linewidth of the Ti3+:Al2O3 pump laser. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 74, No. 3, pp. 351–356, May–June, 2007.  相似文献   

8.
The synthesis and electrical characterisation over a range of oxygen partial pressures (10−20 to 1 atm) are reported for the cubic perovskite niobate-titanates Sr1−x/2Ti1−xNbxO3−δ, which are proposed as potential anode materials for solid oxide fuel cells. Single phase samples were observed for 0≤x≤0.4, and phase purity was retained on annealing at both high and low oxygen partial pressures. Good electrical conductivity was observed on reduction in low oxygen partial pressures, with a maximum for the sample with 25% Nb (x=0.25), σ=5.6 Scm−1 at 930°C (P (O2)=10−18 atm). For dense samples the higher the Nb content the more resistant the reduced sample was to reoxidation as the oxygen partial pressure was increased. Paper presented at the 3rd Euroconference on Solid State Ionics, Teulada, Sardinia, Italy, Sept. 15–22, 1996  相似文献   

9.
Pulsed cathodoluminescence of Nd3+: Y2O3 nanopowders of the cubic and monoclinic phases and the ceramics synthesized from these nanopowders has been investigated in the spectral range 350–850 nm. It is found that the IR emission band of neodymium ions in the Nd3+: Y2O3 cubic phase is located at λ1 ≈ 825 nm. When there is a monoclinic phase admixture, two additional luminescence bands of Nd3+ arise in the spectrum at λ2 ≈ 750 nm and λ3 ≈ 720 nm. The emission spectrum of all Nd3+: Y2O3 materials also contains a wide intrinsic band of yttrium oxide at λ ≈ 485 nm; however, the presence of neodymium decreases the intensity of this band and increases the its structurization. It is suggested that the structure of this band in Nd3+: Y2O3 materials is mainly determined by local absorption (self-absorption) of neodymium ions.  相似文献   

10.
The effects of oxygen content in the sputtering gas on the crystallographic and optoelectronic properties of 210 nm-thick Zr–doped In2O3 (Zr–In2O3) films by rf magnetron sputtering were initially studied. The results of X-ray diffraction show that the Zr–In2O3 films grown on glass substrates exhibit mixed crystallographic orientations. Moreover, the Zr–In2O3 film grown in an Ar atmosphere promotes the appearance of crystallographic orientation of (222). The surface of the Zr–In2O3 film becomes rougher as the oxygen content in the sputtering gas decreases; the current images obtained by conductive atomic force microscopy reveal that the surfaces of the Zr–In2O3 films exhibit a distribution of coexisting conducting and nonconducting regions, and that the area of the nonconducting surface increases with the oxygen content in the sputtering gas. The resistivity is minimized to 3.51×10−4 Ω cm when the Zr–In2O3 film is grown in an Ar atmosphere and the average transmittance in the visible light region is ∼85%. The optical band gap decreases as the oxygen content in the sputtering gas increases.  相似文献   

11.
Absolute spectral luminosity from an O2–O2(a)-H2O gas flow formed by a chemical singlet oxygen generator was measured at 600–800 and 1230–1310 nm wavelengths. The results were used to determine the rate constants for O2(a, 0) + O2(a, 0) → O2(X, 0) + O2(X, 0) + hν (λ = 634 nm) and O2(a, 0) + O2(a, 0) → O2(X, 1) + O2(X, 0) + hν (λ = 703 nm) collision-induced emission ((6.72 ± 0.8) × 10−23 and (7.17 ± 0.8) × 10−23 cm3/s, respectively).  相似文献   

12.
In the context, a modified sol-gel technology was afford to the synthesis of rare earth composite ceramic phosphors MM′O3/CeO2 and MM′O3/CeO2: Pr3+ (M = Ca, Sr; M′ = Ti, Zr) with multicomponent hybrid precursors were composed. The micromorphology, particle size and photoluminescence properties were studied with XRD, SEM and luminescent spectroscopy in detail. Both XRD and SEM indicated the particle sizes were in the submicrometer range of 100 ∼ 300 nm. The photoluminescence for these ceramic phosphors were studied in details with the different component of host (molecular ratio of Sr, Ca and Ti, Zr), presenting a broad spectral band in the visible blue-violet region with the maximum excitation peak at 449 nm and a wide emission range with a maximum peak at 619 nm, which was ascribed to be the characteristic transition of Pr3+ (1D23H4). These phosphors can be expected for visible light conversion (blue → red) materials. Especially it can be found that the introduction of CeO2 can enhance the luminescence intensity of MM′O3 and MM′O3: Pr3+.  相似文献   

13.
We have measured the absorption cross sections of oxygen molecules in oxygen and in an oxygen-argon mixture heated by a shock wave, in the wavelength range 190–250 nm at temperatures of 1500–7000 K, for thermal equilibrium conditions behind the shock wave front. Analysis of the absorption cross sections obtained allowed us to select a data set that adequately describes the absorption characteristics of the electronic transition X3Σ g → B3Σ u for the oxygen molecule. In order to approximate the temperature dependence of these cross sections at a temperature of 1500–4500 K, we chose the function σ(λ, T) = σ0(λ)(1 − exp (−θ/T)) exp (− n*θ/T) where θ0 = 1.4·10−17, 1.4·10−17, 1.2·10− 17, and 1.3·10−17 cm2, n* = 3.1, 4.1, 5.6, and 7.47 for wavelengths 190, 210, 230, and 250 nm, respectively; θ = 2240 K is the characteristic temperature of the O2 molecules. The approximation error was 19–25% and did not exceed the experimental error. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 1, pp. 13–17, January–February, 2006.  相似文献   

14.
An anti-Stokes luminescence band with λmax = 515 nm of microcrystals of solid AgCl0.95I0.05 solutions excited by a radiation flux of density 1013–1015 quanta/cm2·sec in the range 600–800 nm at 77 K was detected. It is shown that the intensity of this luminescence and the frequency of its excitation depend on the prior UV-irradiation of samples. Analysis of the stimulated-photoluminescence spectra and the anti-Stokes luminescence excitation spectra of the indicated microcrystals has shown that to the centers of anti-Stokes luminescence excitation correspond local levels in the forbidden band of the crystals. These states are apparently due to the atomic and molecular disperse silver particles that can be inherent in character or formed as a result of a low-temperature photochemical process. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 72, No. 6, pp. 738–742, November–December, 2005.  相似文献   

15.
The catalytic and electrocatalytic behaviour of the La0.6Sr0.4Co0.8Fe0.2O3 (LSCF) perovskite deposited on yttria stabilized zirconia (YSZ), was studied during the reaction of methane oxidation. Experiments were carried out at atmospheric pressure, and at temperatures between 600 and 900 °C. When, instead of cofeeding with methane in the gas phase, oxygen was electrochemically supplied as O2−, considerable changes in the methane conversion and product selectivity were observed. The non-faradaic effects (NEMCA) were also studied and compared to those observed with metal catalysts. Paper presented at the 4th Euroconference on Solid State Ionics, Renvyle, Galway, Ireland, Sept. 13–19, 1997  相似文献   

16.
The 3 keV O2+\mathrm{O}_{2}^{+} reactive ion beam mixing of Cr/X interfaces (X=Al or Si) has been used to synthesize Cr-based mixed oxide thin films. The kinetics of growth, composition, and electronic structure of those films has been studied using X-ray photoelectron spectroscopy, Auger electron spectroscopy, ultraviolet photoelectron spectroscopy, and factor analysis. Initially, for low ion doses, Cr2O3 species are formed. Later, with increasing the ion dose, Cr2O3 species are first transformed into Cr3+–O–X species, and subsequently, those Cr3+–O–X species are transformed into Cr6+–O–X species. This sequential transformation, Cr2O3→Cr3+–O–X→Cr6+–O–X, is accompanied by a slight increase of the oxygen concentration and a decrease of the Cr/X ratio in the films formed leading to the synthesis of custom designed Cr-based mixed oxides. The changes observed in the valence band and Auger parameters further support the formation of Cr–X mixed oxide species. Angle resolved X-ray photoelectron spectroscopy shows that for low ion doses, when only Cr2O3 and Cr3+–O–X species coexist, Cr3+–O–X species are located nearer the surface than Cr2O3 species, whereas for higher ion doses, when only Cr3+–O–X and Cr6+–O–X species coexist, the Cr6+–O–X species are those located nearer the surface.  相似文献   

17.
The catalytic oxidation of dodecane by air oxygen on a mixed vanadium-molybdenum oxide (V2O5 · MoO3, 40 mol % MoO3) was studied over the temperature range 300–350°C. The reaction at 300–330°C occurred on oxygen vacancies with the rupture of C-H bonds and formation of α-acid. Oxidation above 350°C occurred with the splitting of the C-C bond and formation of two and more acids. Singlet oxygen 1O2 generated in the oxidation of oxide catalyst lattice oxygen participated in the reaction. A possible mechanism of the process was considered.  相似文献   

18.
Infrared (IR) and UV spectra of ternary Li2O–CuO–P2O5 glasses in two series Li2O(65−X)%–CuO(X%)–P2O5(35%), X = 20, 30, 40 and Li2O(55−X)%–CuO(X%)–P2O5(45%), X = (10, 20, 30) were studied. Infrared (IR) investigations showed the metaphosphate and pyrophosphate structures and with increase of CuO content in metaphosphate glass, the skeleton of metaphosphate chains is gradually broken into short phosphate groups such as pyrophosphate. IR spectra showed one band at about 1,220 and 1,260 cm−1 for P2O5(35%) and P2O5(45%) series, respectively, assigned to P=O bonds. For CuO additions ≤20 mol%, the glasses exhibit two bands in the frequency range 780–720 cm−1 which are attributed to the presence of two P–O–P bridges in metaphosphate chain. But for CuO addition ≥30 mol%, the glasses exhibit only a single band at 760 cm−1 which is assigned to the P–O–P linkage in pyrophosphate group. In optical investigations, absorption coefficient versus photon energy showed three regions: low energy side, Urbach absorption, and high energy side. In Urbach’s region, absorption coefficient depends exponentially on the photon energy. At high energy region, optical gap was calculated and investigations showed indirect transition in compounds and decreases in optical gap with increases of copper oxides contents that is because of electronic transitions and increasing of nonbridging oxygen content.  相似文献   

19.
We have studied the effect of lead dopant on the optical absorption, photoluminescence, and x-ray luminescence spectra, and the scintillation characteristics of CdI2 at room temperature. The crystals for the study were grown by the Stockbarger-Bridgman method. Activation of CdI2 from the melt by the compound PbI2 leads to the appearance in the absorption spectra in the near-edge region of an activator band at 395–405 nm, which is interpreted as an A band connected with electronic transitions from the 1S0 state to the 3P1 levels in the Pb2+ ion. For x-ray excitation, CdI2:Pb2+ crystals with optimal dopant concentration (∼1.0 mol%) are characterized by a light yield with maximum in the 570–580 nm region that is an order of magnitude higher than for CdI2 crystals in the 490–500 nm band. For α excitation, the radioluminescence kinetics for cadmium iodide is characterized by a very short (∼0.3 nsec) rise time and fast decay of luminescence, with τ1 ≈ 4 nsec and τ2 = 10–76 nsec. Depending on the conditions under which the crystals were obtained, the fast component fraction is 95%–99%. The crystal is characterized by a similar scintillation pulse in the case of excitation by x-ray pulses. The radioluminescence pulse shape for CdI2:Pb in the decay stage is predominantly exponential, with luminescence decay time constants τ1 ≈ 10 nsec and τ2 = 200–250 nsec. This system is characterized by low afterglow, at the level for the Bi4G3O12 scintillator. We have demonstrated the feasibility of using CdI2:Pb as a scintillator for detecting α particles. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 6, pp. 825–830, November–December, 2008.  相似文献   

20.
Based on analysis of the laser emission spectra of borosilicophosphate glass, coactivated by Er3+ and Yb3+ ions, we have determined the structure of the Stark splitting of the luminescence band for the erbium ion in the 1.5 μm region (the transition 4I13/24I15/2). In the wavelength interval 1532–1547 nm, we identified 12 sets of lines belonging to different types of optical centers of predominantly cubic symmetry. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 73, No. 4, pp. 483–487, July–August, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号