首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structure of the a 4 ion from protonated YGGFL was studied in a quadrupole ion trap mass spectrometer by ‘action’ infrared spectroscopy in the 1000–2000 cm–1 (‘fingerprint’) range using the CLIO Free Electron Laser. The potential energy surface (PES) of this ion was characterized by detailed molecular dynamics scans and density functional theory calculations exploring a large number of isomers and protonation sites. IR and theory indicate the a 4 ion population is primarily populated by the rearranged, linear structure proposed recently (Bythell et al., J. Am. Chem. Soc. 2010, 132, 14766). This structure contains an imine group at the N- terminus and an amide group –CO–NH2 at the C-terminus. Our data also indicate that the originally proposed N-terminally protonated linear structure and macrocyclic structures (Polfer et al., J. Am. Chem. Soc. 2007, 129, 5887) are also present as minor populations. The clear differences between the present and previous IR spectra are discussed in detail. This mixture of gas-phase structures is also in agreement with the ion mobility spectrum published by Clemmer and co-workers recently (J. Phys. Chem. A 2008, 112, 1286). Additionally, the calculated cross-sections for the rearranged structures indicate these correspond to the most abundant (and previously unassigned) feature in Clemmer’s work.  相似文献   

2.
We report on the characterization by mass spectrometry (MS) of a rapid, reagentless and site-specific cleavage at the N-terminus of the amino acid cysteine (C) in peptides and proteins induced by the thermal decomposition at 220–250 °C for 10 s in solid samples. This thermally induced cleavage at C occurs under the same conditions and simultaneously to our previously reported thermally induced site-specific cleavage at the C-terminus of aspartic acid (D) (Zhang, S.; Basile, F. J. Proteome Res. 2007, 6, (5), 1700–1704). The C cleavage proceeds through cleavage of the nitrogen and α–carbon bond (N-terminus) of cysteine and produces modifications at the cleavage site with an amidation (−1 Da) of the N-terminal thermal decomposition product and a −32 Da mass change of the C-terminal thermal decomposition product, the latter yielding either an alanine or β-alanine residue at the N-terminus site. These modifications were confirmed by off-line thermal decomposition electrospray ionization (ESI)-MS, tandem MS (MS/MS) analyses and accurate mass measurements of standard peptides. Molecular oxygen was found to be required for the thermal decomposition and cleavage at C as it induced an initial cysteine thiol side chain oxidation to sulfinic acid. Similar to the thermally induced D cleavage, missed cleavages at C were also observed. The combined thermally induced digestion process at D and C, termed thermal decomposition/digestion (TDD), was observed on several model proteins tested under ambient conditions and the site-specificity of the method confirmed by MS/MS.  相似文献   

3.
The structure and reactivity of the N-acetyl-cysteine radical cation and anion were studied using ion-molecule reactions, infrared multi-photon dissociation (IRMPD) spectroscopy, and density functional theory (DFT) calculations. The radical cation was generated by first nitrosylating the thiol of N-acetyl-cysteine followed by the homolytic cleavage of the S–NO bond in the gas phase. IRMPD spectroscopy coupled with DFT calculations revealed that for the radical cation the radical migrates from its initial position on the sulfur atom to the α-carbon position, which is 2.5 kJ mol–1 lower in energy. The radical migration was confirmed by time-resolved ion-molecule reactions. These results are in contrast with our previous study on cysteine methyl ester radical cation (Osburn et al., Chem. Eur. J. 2011 , 17, 873–879) and the study by Sinha et al. for cysteine radical cation (Phys. Chem. Chem. Phys. 2010 , 12, 9794–9800) where the radical was found to stay on the sulfur atom as formed. A similar approach allowed us to form a hydrogen-deficient radical anion of N-acetyl-cysteine, (M – 2H) •– . IRMPD studies and ion-molecule reactions performed on the radical anion showed that the radical remains on the sulfur, which is the initial and more stable (by 63.6 kJ mol–1) position, and does not rearrange.  相似文献   

4.
Significant alkali-metal-doped effects on the structure and the first hyperpolarizability (β 0) of effective multi-nitrogen complexant tris[(2-imidazolyl)methyl]amine (TIMA) are investigated. Three imidazoles of TIMA like three blades of propeller connect with methyls by the C–C single bonds. Because of the three C–C single-bond cooperative rotations, the TIMA behaves with great flexibility, and it is a high-performance multi-nitrogen complexant for the alkali metal doping. Thus, the new complexes Am-TIMA (Am = Li, Na, and K) with electride characteristic have diffuse excess electron than the reported electride-type system due to the strong interaction between the complexant TIMA and alkali metal. For the first hyperpolarizability, three engaging electrides Am-TIMA with the diffuse excess electrons exhibit considerably large β 0 values using the MP2 (full) method and the β 0 values of new electrides are greatly larger (3,464–29,705 times) than that (338 au) of TIMA. Surprisingly, the K-TIMA sets a new record β 0 value to be 1.00 × 107 au which far exceeds than that (3,694–76,978 au) of the reported electride-type system Li@calix[4]pyrrole (J Am Chem Soc 127:10977–10981, 2005) and Lin−H−(CF2−CH2)3−H (n = 1, 2) (J Am Chem Soc 129:2967–2970, 2007) and 31,123 au of the organometallic system (J Am Chem Soc 121:4047–4053, 1999) Ru(trans-4,4′-diethylaminostyryl-2,2′-bipyridine)32+, as well as 1.23 × 106 au of the large donor-CNT systems (Nano Lett 8:2814–2818, 2008). Clearly, the alkali-metal-doped effect on the first hyperpolarizability is very dramatic for the high-performance multi-nitrogen complexant TIMA. Considering simple possibility from molecule to material, the β 0 values of optimized Li-TIMA-dimer and Li-TIMA-tetramer are investigated by BHandHLYP method. Interestingly, results show that the order of β 0 value is Li-TIMA-monomer < Li-TIMA-dimer < Li-TIMA-tetramer. So the new three-propeller-blade-shaped electrides can be considered as candidates for high-performance nonlinear optical materials.  相似文献   

5.
We report on the preliminary testing of a new position-sensitive detector (PSD) by combining a microchannel plate (MCP) and a charge-sensitive pixilated anode with a direct readout based on charge-coupled detector (CCD) technology, which will be referred to as IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612–623, 2011; Johnson et al. J Am Soc Mass Spectrom 22(8):1388–1394, 2011; Hadjar et al. J Am Soc Mass Spectrom 22(10):1872–1884, 2011). This work exploits the recently discovered electron detection capability of the IonCCD (Hadjar et al. J Am Soc Mass Spectrom 22(4):612–623, 2011), allowing it to be used directly behind an MC. This MCP-IonCCD configuration potentially obviates the need for electro-optical ion detector systems (EOIDs), which typically feature a relatively difficult-to-implement 5-kV power source as well as a phosphorus screen behind the MCP for conversion of electrons to photons prior to signal generation in a photosensitive CCD. Thus, the new system (MCP-IonCCD) has the potential to be smaller, simpler, more robust, and more cost efficient than EOID-based technologies in many applications. The use of the IonCCD as direct MCP readout anode, as opposed to its direct use as an ion detector, will benefit from the instant three-to-four-order-of-magnitude gain of the MCP with virtually no additional noise. The signal/noise gain can be used for either sensitivity or speed enhancement of the detector. The speed enhancement may motivate the development of faster IonCCD readout speeds (currently at 2.7 ms) to achieve the 2 kHz frame rate for which the IonCCD chip was designed, a must for transient signal applications. The presented detector exhibits clear potential not only as a trace analysis detector in scan-free mass spectrometry and electron spectroscopy but also as a compact detector for photon and particle imaging applications.  相似文献   

6.
In this paper, we first recall some known architectures of polyhedral links (Qiu and Zhai in J Mol Struct (THEOCHEM) 756:163–166, 2005; Yang and Qiu in MATCH Commun Math Comput Chem 58:635–646, 2007; Qiu et al. in Sci China Ser B Chem 51:13–18, 2008; Hu et al. in J Math Chem 46:592–603, 2009; Cheng et al. in MATCH Commun Math Comput Chem 62:115–130, 2009; Cheng et al. in MATCH Commun Math Comput Chem 63:115–130, 2010; Liu et al. in J Math Chem 48:439–456 2010). Motivated by these architectures we introduce the notions of polyhedral links based on edge covering, vertex covering, and mixed edge and vertex covering, which include all polyhedral links in Qiu and Zhai (J Mol Struct (THEOCHEM) 756:163–166, 2005), Yang and Qiu (MATCH Commun Math Comput Chem 58:635–646, 2007), Qiu et al. (Sci China Ser B Chem 51:13–18, 2008), Hu et al. (J Math Chem 46:592–603, 2009), Cheng et al. (MATCH Commun Math Comput Chem 62:115–130, 2009), Cheng et al. (MATCH Commun Math Comput Chem 63:115–130, 2010), Liu et al. (J Math Chem 48:439–456, 2010) as special cases. The analysis of chirality of polyhedral links is very important in stereochemistry and the Jones polynomial is powerful in differentiating the chirality (Flapan in When topology meets chemistry. Cambridge Univ. Press, Cambridge, 2000). Then we give a detailed account of a result on the computation of the Jones polynomial of polyhedral links based on edge covering developed by Jin, Zhang, Dong and Tay (Electron. J. Comb. 17(1): R94, 2010) and, at the same time, by using this method we obtain some new computational results on polyhedral links of rational type and uniform polyhedral links with small edge covering units. These new computational results are helpful to judge the chirality of polyhedral links based on edge covering. Finally, we give some remarks and pose some problems for further study.  相似文献   

7.
Noscapine and its derivatives are important microtubule-interfering agents shown to have potent anti-tumor activity. The binding free energies (ΔG bind) of noscapinoids computed using linear interaction energy (LIE) method with a surface generalized Born (SGB) continuum solvation model were in agreement with the experimental ΔG bind with average root mean square error of 0.082 kcal/mol. This LIE–SGB model guided us in designing a novel derivative of noscapine, amino-noscapine [(S)-3-((R)-9-amino-4-methoxy-6-methyl-5,6,7,8-tetrahydro [1, 3] dioxolo[4,5-g]isoquinolin-5-yl)-6,7-dimethoxy isobenzo-furan-1(3H)-one] that has higher tubulin binding activity (predicted ΔG bind = −6.438 kcal/mol and experimental ΔG bind = −6.628 kcal/mol) than noscapine, but does not significantly change the total extent of the tubulin subunit/polymer ratio. The modes of interaction of amino-noscapine with the binding pocket of tubulin involved three hydrogen bonds and are distinct compared to noscapine which involved only one hydrogen bond. Also the patterns of non-bonded interactions are albeit different between both the lignads. The ‘blind docking’ approach (docking of ligand with different binding sites of a protein and their evaluations) as well as the reasonable accuracy of calculating ΔG bind using LIE–SGB model constitutes the first evidence that this class of compounds binds to tubulin at a site overlapping with colchicine-binding site or close to it. Our results revealed that amino-noscapine has better anti-tumor activity than noscapine.  相似文献   

8.
RNA-binding protein QKI, a member of the Signal Transduction and Activation of RNA family, is found to be essential in the blood vessel development and postnatal myelination in central nervous system (Woo et al., Oncogene 28:1176–1186, 2009; Lu et al., Nucleic Acids Res 31(15):4616–4624, 2003; Bohnsack et al., Genesis 44(2):93–104, 2006). However, its wide expression pattern suggests other fundamental roles in vivo (Kondo et al., Mamm Genome 10(7):662–669, 1999). To facilitate the understanding of QKI function in various systems, we prepared the polyclonal and monoclonal antibodies against QKI. To obtain the antigen, recombinant His-tagged QKI was expressed in Escherichia coli and highly purified by Ni2+-chelated column combined with hydrophobic and ion exchange methods. Following three types of immunizations with different adjuvants, including Freund’s, PAGE gel, and nitrocellulose membrane, only the antiserum produced with Freund’s adjuvant is effective for Western blot detection. Several McAb clones are able to recognize both endogenous and over-expressed QKI with high affinity in Western blot and immunofluorescence. The specificity of Ab was validated as weakening, and no specific signals were observed in cells with QKI knocking down. Immunohistochemistry analysis further showed positive staining of QKI in kidney where QKI mRNA was abundantly expressed, ensuring the wide applications of the QKI Abs in the ongoing mechanistic studies.  相似文献   

9.
The time course of an enzyme catalyzed reaction is normally followed either by monitoring the instantaneous concentration or velocity of an enzyme species or a product. In many enzyme catalyzed reactions these time variations are multi-exponential. The accurate fit of the relevant curves to obtain the kinetic parameters involved can be difficult using conventional methods (Galvez et al. in J Theor Biol 89:37–44, 1981; Garcia-Canovas et al. in Biochim Biophys Acta 912:417–423, 1987; Tudela et al. in Biochim Biophys Acta 912:408–416, 1987; Teruel et al. in Biochim Biophys Acta 911:256–260, 1987; Garrido del Solo et al. in Biochem J 294:459–464, 1993; Varon et al. in Int J Biochem 25:1889–1895, 1993; Garrido del Solo et al. in An Quim 89:319–324, 1993; Varon et al. in J Mol Catal 83:273–285, 1993; Garrido del Solo et al. in Biochem J 303(Pt 2):435–440, 1994; Garrido del Solo and Varon in An Quim 91:13–18, 1995; Garrido del Solo et al. in Biosystems 38:75–86, 1996; Garrido del Solo et al. in Int J Biochem Cell Biol 28:1371–1379, 1996; Garrido del Solo et al. in Int J Biochem Cell Biol 30:735–743, 1998; Varon et al. in J Mol Catal 59:97–118, 1990). In order to circumvent such difficulties Arribas et al. (J Math Chem 44:379–404, 2008) proposed an evaluation method which is applicable regardless of the complexity of the kinetic equation. This procedure is based on the numerical determination of statistical moments from experimental time progress curves. The fitting of these experimentally obtained moments to the corresponding theoretical symbolic expressions allows, in most cases, all the individual rate constants involved to be evaluated. In this paper we perform a general analysis that can be applied to any unstable enzyme system described by a three-exponential equation and apply it to a substrates induced enzyme inactivation process that is described by this type of equation. To verify the goodness of the method we have simulated time progress curves and applied the suggested procedure to these curves, obtaining kinetic parameters values very close to those used to obtain simulated curves. Finally, we compare our results with those obtained in previous contributions in which other procedures were used.  相似文献   

10.
Derivatization of peptides as quaternary ammonium salts (QAS) is a promising method for sensitive detection by electrospray ionization tandem mass spectrometry (Cydzik et al. J. Pept. Sci. 2011, 17, 445453). The peptides derivatized by QAS at their N-termini undergo fragmentation according to the two competing mechanisms – charge remote (ChR) and charge directed (ChD). The absence of mobile proton in the quaternary salt ion results in ChR dissociation of a peptide bond. However, Hofmann elimination of quaternary salt creates an ion with one mobile proton leading to the ChD fragmentation. The experiments on the quaternary ammonium salts with deuterated N-alkyl groups or amide NH bonds revealed that QAS derivatized peptides dissociate according to the mixed ChR-ChD mechanism. The isotopic labeling allows differentiation of fragments formed according to ChR and ChD mechanisms.  相似文献   

11.
The torsional levels of various isotopologues of acetic acid are determined from an ab initio potential energy surface using a flexible model depending on the OH-torsion and the methyl-torsion coordinates. Previous calculations for CH3–COOH and CH3–COOD are review and first theoretical energies of the one-deuterated species CH2D–COOH are provided. The zero point vibrational energy correction and an exact definition for the methyl-torsional coordinate have been considered. The levels are compared with previous calculations (Senent in Mol Phys 99:1311, 2001) and experimental data (Havey et al. in J Mol Spectrosc 229:151, 2005). Isotopic effects on the torsional barriers and energies are discussed. For CH2D–COOD, the deuteration splits by 25 cm−1 the zero vibrational energy level.  相似文献   

12.
Derivative of 8-hydroxyquinoline i.e. Clioquinol is well known for its antibiotic properties, drug design and coordinating ability towards metal ion such as Copper(II). The structure of mixed ligand complexes has been investigated using spectral, elemental and thermal analysis. In vitro anti microbial activity against four bacterial species were performed i.e. Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Bacillus substilis and found that synthesized complexes (15–37 mm) were found to be significant potent compared to standard drugs (clioquinol i.e. 10–26 mm), parental ligands and metal salts employed for complexation. The kinetic parameters such as order of reaction (n = 0.96–1.49), and the energy of activation (E a = 3.065–142.9 kJ mol−1), have been calculated using Freeman–Carroll method. The range found for the pre-exponential factor (A), the activation entropy (S* = −91.03 to−102.6 JK−1 mol−1), the activation enthalpy (H* = 0.380–135.15 kJ mol−1), and the free energy (G* = 33.52–222.4 kJ mol−1) of activation reveals that the complexes are more stable. Order of stability of complexes were found to be [Cu(A4)(CQ)OH] · 4H2O > [Cu(A3)(CQ)OH] · 5H2O > [Cu(A1)(CQ)OH] · H2O > [Cu(A2)(CQ)OH] · 3H2O  相似文献   

13.
14.
An electrospray ionization tandem mass spectrometric (ESI-MS-MS) method has been developed for the determination of cyanide (CN) in blood. Five microliters of blood was hemolyzed with 50 μL of water, then 5 μL of 1 M tetramethylammonium hydroxide solution was added to raise the pH of the hemolysate and to liberate CN from methemoglobin. CN was then reacted with NaAuCl4 to produce dicyanogold, Au(CN)2, that was extracted with 75 μL of methyl isobutyl ketone. Ten microliters of the extract was injected directly into an ESI-MS-MS instrument and quantification of CN was performed by selected reaction monitoring of the product ion CN at m/z 26, derived from the precursor ion Au(CN)2 at m/z 249. CN could be measured in the quantification range of 2.60 to 260 μg/L with the limit of detection at 0.56 μg/L in blood. This method was applied to the analysis of clinical samples and the concentrations of CN in the blood were as follows: 7.13 ± 2.41 μg/L for six healthy non-smokers, 3.08 ± 1.12 μg/L for six CO gas victims, 730 ± 867 μg for 21 house fire victims, and 3,030 ± 97 μg/L for a victim who ingested NaCN. The increase of CN in the blood of a victim who ingested NaN3 was confirmed using MS-MS for the first time, and the concentrations of CN in the blood, gastric content and urine were 78.5 ± 5.5, 11.8 ± 0.5, and 11.4 ± 0.8 μg/L, respectively.  相似文献   

15.
N,N-dimethylhydroxylamine (DMHA) is a novel salt-free reducing reagent used in the separation U from Pu and Np in the reprocessing of power spent fuel. This paper reports on the radiolysis of aqueous DMHA solution and its radiolytic liquid organics. Results show that the main organics in irradiated DMHA solution are N-methyl hydroxylamine, formaldehyde and formic acid. The analysis of DMHA and N-methyl hydroxylamine were performed by gas chromatography, and that of formaldehyde was performed by ultraviolet–visible spectrophotometry. The analysis of formic acid was performed by ion chromatography. For 0.1–0.5 mol L−1 DMHA irradiated to 5–25 kGy, the residual DMHA concentration is (0.07–0.47) mol L−1, the degradation rate of DMHA at 25 kGy is 10.1–30.1%. The concentrations of N-methylhydroxylamine, formaldehyde and formic acid are (8.25–19.36) × 10−3, (4.20–36.36) × 10−3 and (1.35–10.9) × 10−4 mol L−1, respectively. The residual DMHA concentration decreases with the increasing dose. The concentrations of N-methylhydroxylamine and formaldehyde increase with the dose and initial DMHA concentration, and that of formic acid increases with the dose, but the relationship between the concentration of formic acid and initial DMHA concentration is not obvious.  相似文献   

16.
Based on the p426 series of expression vectors developed by Mumberg et al. (Gene 156, 119–122, 1995), we have generated a set of plasmids that allow the glucose-dependent expression of target genes in the yeast, Saccharomyces cerevisiae. The ADH1 promoter in plasmid p426-ADH1 was replaced by the 1-kb 5′-region from either of the following genes: HXK1, YGR243, HXT4 and HXT7. Expression mediated by the respective 5′-regions was monitored with EGFP, yEGFP3-CLN2pest and TurboGFP as marker genes. Fluorescence is induced 2.7-fold using the HXK1, 2.3-fold using the YGR243-, 5-fold using the HXT7- and 12.6-fold using the HXT4 5′-regions upon depletion of glucose to a concentration of <0.5 g/l.  相似文献   

17.
Following with the discovery of the electron by J. J. Thomson at the end of the nineteenth century a steady elucidation of the structure of the atom occurred over the next 40 years culminating in the discovery of nuclear fission in 1938–1939. The significant steps after the electron discovery were: discovery of the nuclear atom by Rutherford (Philos Mag 6th Ser 21:669–688, 1911), the transformation of elements by Rutherford (Philos Mag 37:578–587, 1919), discovery of artificial radioactivity by Joliot-Curie and Joliot-Curie (Comptes Rendus Acad Sci Paris 198:254–256, 1934), and the discovery of the neutron by Chadwick (Nature 129:312, 1932a, Proc R Soc Ser A 136:692–708, 1932b; Proc R Soc Lond Ser A 136:744–748, 1932c). The neutron furnished scientists with a particle able to penetrate atomic nuclei without expenditure of large amounts of energy. From 1934 until 1938–1939 investigations of the reaction between a neutron and uranium were carried out by E. Fermi in Rome, O. Hahn, L. Meitner and F. Strassmann in Berlin and I. Curie and P. Savitch in Paris. Results were interpreted as the formation of transuranic elements. After sorting out complex radio-chemistry and radio-physics O. Hahn and F. Strassmann came to the conclusion, beyond their belief, that the uranium nucleus split into smaller fragments, that is nuclear fission. This was soon followed in 1939 by its theoretical interpretation by L. Mietner and O. Frisch.  相似文献   

18.
The structure of a new compound was determined using PMR and 13C NMR spectroscopy (HHCOSY, HSBC, HMBC, ROESY) as 2-[3′-methoxy,4-O-β-D-galactopyranos-1-yl)benzyl]-3-(3″,4″-dimethoxybenzyl)-4hydroxybutyric acid, which was isolated for the first time from seeds of Scotch thistle Onopordum acanthium L. *For No. XII, see [1]. Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 53–55, January–February, 2009.  相似文献   

19.
Our screen for tubulin-binding small molecules that do not depolymerize bulk cellular microtubules, but based upon structural features of well known microtubule-depolymerizing colchicine and podophyllotoxin, revealed tubulin binding anti-cancer property of noscapine (Ye et al. in Proc Natl Acad Sci USA 95:2280–2286, 1998). Guided by molecular modelling calculations and structure–activity relationships we conjugated at C9 of noscapine, a folate group—a ligand for cellular folate receptor alpha (FRα). FRα is over-expressed on some solid tumours such as ovarian epithelial cancers. Molecular docking experiments predicted that a folate conjugated noscapine (Targetin) accommodated well inside the binding cavity (docking score −11.295 kcal/mol) at the interface between α- and β-tubulin. The bulky folate moiety of Targetin is extended toward lumen of microtubules. The binding free energy (ΔG bind) computed based on molecular mechanics energy minimization was −221.01 kcal/mol that revealed favourable interaction of Targetin with the receptor. Chemical synthesis, tubulin-binding experiments, and anti-cancer activity in vitro corroborate fully well with the molecular modelling experiments. Targetin binds tubulin with a dissociation constant (K d value) of 149 ± 3.0 μM and decreases the transition frequencies between growth and shortening phases of microtubule assembly dynamics at concentrations that do not alter the total polymer mass. Cancer cells in general were more sensitive to Targetin compared with the founding compound noscapine (IC50 in the range of 15–40 μM). Quite strikingly, ovarian cancer cells (SKOV3 and A2780), known to overexpress FRα, were much more sensitive to targetin (IC50 in the range of 0.3–1.5 μM).  相似文献   

20.
We report the use of paper-based microfluidic devices fabricated from a novel polymer blend for the monitoring of urinary ketones, glucose, and salivary nitrite. Paper-based devices were fabricated via photolithography in less than 3 min and were immediately ready for use for these diagnostically relevant assays. Patterned channels on filter paper as small as 90 μm wide with barriers as narrow as 250 μm could be reliably patterned to permit and block fluid wicking, respectively. Colorimetric assays for ketones and nitrite were adapted from the dipstick format to this paper microfluidic chip for the quantification of acetoacetate in artificial urine, as well as nitrite in artificial saliva. Glucose assays were based on those previously demonstrated (Martinez et al., Angew Chem Int Ed 8:1318–1320, 1; Martinez et al., Anal Chem 10:3699–3707, 2; Martinez et al., Proc Nat Acad Sci USA 50:19606–19611, 3; Lu et al., Electrophoresis 9:1497–1500, 4; Abe et al., Anal Chem 18:6928–6934, 5). Reagents were spotted on the detection pad of the paper device and allowed to dry prior to spotting of samples. The ketone test was a two-step reaction requiring a derivitization step between the sample spotting pad and the detection pad, thus for the first time, confirming the ability of these paper devices to perform online multi-step chemical reactions. Following the spotting of the reagents and sample solution onto the paper device and subsequent drying, color images of the paper chips were recorded using a flatbed scanner, and images were converted to CMYK format in Adobe Photoshop CS4 where the intensity of the color change was quantified using the same software. The limit of detection (LOD) for acetoacetate in artificial urine was 0.5 mM, while the LOD for salivary nitrite was 5 μM, placing both of these analytes within the clinically relevant range for these assays. Calibration curves for urinary ketone (5 to 16 mM) and salivary nitrite (5 to 2,000 μM) were generated. The time of device fabrication to the time of test results was about 25 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号