首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Flow microcalorimetry was used to study the adsoption of anionic alkyl surfactants from aque--ous solutions onto silica. It is found that for alkyl sulfate systems the strength of adsorption interactionincreases with increases of the alkyl chain length and decreases as temperature rises. The adsorptiondepends only on monomer concentration of the solution even above the critical micelle concentration(cmc). The assumption is made that the adsorption involves only a transfer of monomers from bulkto surface phase. A different adsorption mechanism is operative for the alkyl carboxylate.  相似文献   

2.
We have determined the surface excess of surface active anion and counter-ions in a non-aqueous polar solution of anionic surfactants blends, as well as their distributions near the solution surface. The blends of two anionic surfactants, sodium dodecyl sulfate (SDS) and cesium dodecyl sulfate (CDS), with different contents were used as solutes to prepare the solutions. According to the isotherms that are separately fitted to the pure SDS and the pure CDS solutions (C. Wang and H. Morgner, Langmuir, 2010, 26, 3121), CDS has a slightly but significantly higher surface excess than SDS (CDS is 14.8% higher) at the concentration of 0.04 molal kg(-1) solvent. Therefore, in this work we chose 0.04 molal kg(-1) solvent as total anion concentration and varied the contents of surfactants. From present experimental results, we found that the surface excess of anion increases slightly with the CDS in the bulk content. Importantly, the fractions of Cs(+) in cationic surface excess are higher than its contents in the bulk for all three solutions. This demonstrates that Cs(+) is more competitive than Na(+) in the adsorption. The surface structure of the solutions have been characterized by concentration-depth profiles, of Cs(+), Na(+) and of sulfur which is used to identify dodecyl sulfate. Those profiles evidence that Cs ions penetrate deeper than sodium ions into the layer formed by the heads of the anions, reducing the electrical potential of the surface more efficiently. This can be used to explain the adsorption competition between those two counter-ions. The cause that makes Cs(+) more competitive than Na(+) in the adsorption can be attributed to its less tightly bound solvation shell, and thus, to its effectively smaller ion size.  相似文献   

3.
The effect of the deaeration on the adsorption of three cationic surfactants cetyldimethylbenzylammonium chloride (CDBACl), cetyltrimethylammonium bromide (CTAB) and octadecyltrimethylammonium bromide (OTAB) at the mercury/electrolyte solution interface is studied. The deaeration is studied using either nitrogen or helium and the effect of deaeration process and time is also studied. In all cases an effect of the deaeration time is found which is mainly observed at potentials where a condensed film is formed. Capacity-time curves at the potentials where the film is formed show a nucleation and growth mechanism with induction time that depends on the deaeration time. The deaeration slows down the kinetics of the film formation but does not change the equilibrium capacitance value of the film. The decrease of the dissolved gas from the water that perturbs its structure is perhaps the main reason for the behaviour observed during the adsorption of these surfactants.  相似文献   

4.
The adsorption behaviour of synthesized anionic surfactants with chemical structure RO–Ph–N?N–Ph–X, where R is octyl, dodecyl or cetyl and X is SO3Na, was analysed. Analysis of the behaviour of the surfactants was made using a modified version of the Frumkin adsorption isotherm. The values of thermodynamic parameters were calculated at the solution/air interface. The relation between adsorption of the surfactants at the solution/air interface and solid/liquid interface was investigated. The surface properties of these synthetic surfactants were studied. The results show that the length of the hydrocarbon chain of these surfactants plays a major role in determining the surface and thermodynamic properties. The results also indicate that there is a good relationship between effectiveness of adsorption of the surfactant and its efficiency as a collector. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
It is shown by experiments that the DeSNa desorption kinetics is governed by a pure diffusion mechanism, while the desorption of more surface active surfactants such as C13DMPO and Triton X-100 obeys a mixed mechanism. The BLG desorption kinetics, as shown by experiments, is determined by a barrier mechanism. From the analysis of the temperature dependence of the BLG desorption kinetics it is possible to calculate the activation energy of this process, which is quite close to the free energy of BLG adsorption. The theoretical model of desorption kinetics predicts that these two energetic parameters are approximately equal to each other if the adsorption activation energy is low. This can explain the fact that the higher the adsorption activity of a substance is, the lower is its desorption rate.  相似文献   

6.
The mixture of the anionic O,O′-bis(sodium 2-lauricate)-p-benzenediol (C11pPHCNa) and cationic (oligoona)alkanediyl-α, ω-bis(dimethyldodecylammonium bromide) (C12-2-Ex-C12·2Br) gemini surfactants has been investigated by surface tension and pyrene fluorescence. The results show that the surface tension γ drops faster with total surfactant concentration CT for α1 = 0.1 or 0.3 than for α1 = 0.7 or 0.9, where α1 is the mole fraction of C11pPHCNa in the bulk solution on a surfactant-only basis. The fast drop in γ for α1 < 0.5 indicates strong adsorption at the air/water interface owing to the interaction between oppositely charged components, resulting in the formation of the adsorption double layers in the subsurface. The slow descent in γ for α1 > 0.5 is attributed to the pre-aggregation in the solution before the critical micelle concentration cmc. A possible mechanism is proposed.  相似文献   

7.
 To describe diffusion-controlled adsorption, the diffusion equation is solved under different initial and boundary conditions by means of a Laplace transformation. By solving this equation, it has been found that the solution, which Ward and Tordai used, is only applicable for x>0; therefore, it is incorrect if the derivation is made at x = 0. Ward and Tordai did not notice this and the first derivation was made at x = 0 in order to get the dynamic surface adsorption, Γ(t). In this paper, an accurate solution, which is applicable for x≥ 0, is given and the expression for Γ(t) is obtained. Furthermore the relationship between the dynamic surface tension and Γ(t) is derived. As an example, the dynamic surface tensions of an aqueous octyl-β-d-glucopyranosid solution were measured by means of the maximum bubble pressure method. By using the derived theory it has been proved that the controlling mechanism of the adsorption process of this surfactant at the long-time-adsorption limits changes as a function of the bulk concentration; only at dilute concentration is it controlled by diffusion. Received: 26 July 1999/Accepted in revised form: 16 September 1999  相似文献   

8.
Zwitterionic surfactants are formally neutral but with headgroups containing both a positive charge center and a negative charge center separated from each other by a spacer group, with a long hydrophobic tail attached to one of the charge centers, usually but not always the positive charge center. The micellization and adsorption properties of zwitterionic surfactants depend on specifics of the surfactant structure such as the length m of the hydrophobic alkyl chain, the length n of the intercharge spacer and the nature of the headgroup charge centers. Micellization is favored by an increase in the hydrophobic tail length m, but goes through a maximum for interchange spacings of n = 3–4 methylene groups. There are additional effects from the presence of additional hydrophilic substituent groups in the spacer. Specific binding of anions and the cation valence of added electrolyte are factors that also modulate the micellization and adsorption properties of zwitterionic surfactants in the presence of added electrolyte. Anions in particular bind preferentially to zwitterionic micelles independent of the relative order of the charge centers in the headgroup. The anion binding affinities follow a Hofmeister series and impart a net negative charge to the micelles. Micellization is temperature-dependent and exhibits enthalpy-entropy compensation, with entropy dominant at lower temperatures and enthalpy more important at higher temperatures. The judicious manipulation of these factors permits control of the interfacial properties of zwitterionic surfactants, responsible for a wide range of applications in chromatography, electrophoresis, cloud point extraction, solubilization, stabilization of biomolecules and nanomaterials and catalysis.  相似文献   

9.
10.
A large number of experimental results of different surfactant adsorption systems (mainly on the silicas) obtained from both equilibrium and kinetic studies under different conditions are interpreted by a model of small individual surface aggregates. The adsorption model is contrasted with the influences of various factors, including electrostatic interaction, hydrophobic interaction, concentrations, types of coions, types of counterions, surfactant structure, alkyl chain length, types of head groups, neutral electrolytes, pH, adsorbent structure, porosity, surface charge density, and surface polarity.Dedicated to Frau Professor Dr. Elsa Ullmann on the occasion of her 80th birthday  相似文献   

11.
12.
The equilibrium and kinetic aspects of the adsorption of alkyltrimethylammonium surfactants at the silica-aqueous solution interface have been investigated using optical reflectometry. The effect of added electrolyte, the length of the hydrocarbon chain, and of the counter- and co-ions has been elucidated. Increasing the length of the surfactant hydrocarbon chain results in the adsorption isotherm being displaced to lower concentrations. The adsorption kinetics indicate that above the cmc micelles are adsorbing directly to the surface and that as the chain length increases the hydrophobicity of the surfactant has a greater influence on the adsoption kinetics. While the addition of 10 mM KBr increases the CTAB maximal surface excess, there is no corresponding increase for the addition of 10 mM KCl to the CTAC system. This is attributed to the decreased binding efficiency of the chloride ion relative to the bromide ion. Variations in the co-ion species (Li, Na, K) have little effect on the adsorption rate and surface excess of CTAC up to a bulk electrolyte concentration of 10 mM. However, the rate of adsorption is increased in the presence of electrolyte. Slow secondary adsorption is seen over a range of concentrations for CTAC in the absence of electrolyte and importantly in the presence of LiCl; the origin of this slow adsorption is attributed to a structural barrier to adsorption.  相似文献   

13.
Summary Ellipsometry has been applied to study the adsorption of sodium dodecylsulfate (NaDS) at the air/solution interface of the surfactant in water and aqueous sodium chloride. Results are expressed by the ellipticitye and the anglea which the major axis of the ellipse forms with the plane of incidence of the light. The ellipticity is found to change its sign at low NaDS concentrations and to pass a maximum somewhat below the cmc. Below the maximum the increment in ellipticity Aee is a linear function of the surface excess concentration dodecylsulfate. The slope e/gd this linear relation is found to decrease when inert electrolyte (NaCl) is added. The azimuth anglea increases slightly with NaDS concentration near and above the cmc. The results are discussed in terms of the Drude theory.
Zusammenfassung Die Adsorption von Natrium Dodecylsulfat (NaDS) an der Oberfläche wäßßriger Lösungen wurde mit Hilfe eines Ellipsometers untersucht. Die Meßergebnisse werden durch die Elliptizität e und den Winkel a zwischen der Hauptachse der Ellipse und der Einfallsebene des Lichtstrahls ausgedrü ckt. Die Elliptizität wechselt ihr Vorzeichen im Bereich geringer Konzentrationen von NaDS und läuft durch ein Maximum etwas unterhalb der cmc des Tensids. Unterhalb des Maximums wird eine lineare Beziehung zwischen dem Inkrement der Elliptizität e und der Oberflächen-Überschußkonzentration von Dodecylsulfat gefunden. Durch Zugabe eines inerten Elektrolyten (NaC1) wird die Steigung e/ stark verringert. Der Azimuth-Winkel a nimmt im Bereich der cmc des Tensids schwach zu. Die Ergebnisse werden im Rahmen der Drude-Theorie diskutiert.
  相似文献   

14.
A change of oil/water interfacial tension in the presence of cationic or anionic surfactants in an organic phase was observed due to the addition of charged fine solids in the aqueous phase. The charged fine solids in the aqueous phase adsorb surfactants diffused from the oil phase, thereby causing an increase in the bulk equilibrium surfactant concentration in the aqueous phase, governed by the Stern-Grahame equation. Consequently, surfactant adsorption at the oil-water interface increases, which was demonstrated from the measured reduction of the oil-water interfacial tension. The increased surfactant partition in the aqueous phase in the presence of the charged particles was confirmed by the measured decrease in the surface tension for the collected aqueous solution after solids removal, as compared with the cases without solids addition.  相似文献   

15.
The adsorption of cetyldimethylbenzylammonium chloride (CDBACl) on the hanging mercury electrode is studied in various supporting electrolytes at various temperatures from 1 to 50 degrees C. A condensed film with low capacitance is formed at negative potentials at transition temperatures below approximately 40 degrees C. The decrease of the temperature favors the film formation, and increases the width of the capacitance pit, while its value remains practically constant. Hysteresis phenomena are also observed during different scan directions. Capacitance-time curves at the potentials where the film is formed show in some cases a nucleation and growth mechanism with induction time and studied by the Avrami formulation. At high temperatures an increase of the capacitance with time is observed depending on the CDBACl concentration and slightly on the electrolyte used, and is attributed to the formation of hemimicelles. At high negative potentials a second narrow region with lower capacitance values is observed. This is easily observed at very high temperatures, while it is absent at lower temperatures. It depends upon the concentration of CDBACl and the electrolyte used. The results are different from those obtained for the adsorption of cetyltrimethylammonium bromide on mercury, indicating the importance of interaction between the hydrophobic chains.  相似文献   

16.
Recent advances in understanding dynamic surface tensions (DSTs) of surfactant solutions are discussed. For pre-CMC solutions of non-ionic surfactants, theoretical models and experimental evidence for a mixed diffusion-kinetic adsorption mechanism are covered. For micellar solutions of non-ionics, up to approximately 100 x CMC, the DST behaviour can also be accounted for using a mixed mechanism model. Finally, the first reported measurements of the dynamic surface excess Gamma(t), using the overflowing cylinder in conjunction with neutron reflection, are described.  相似文献   

17.
Understanding surfactant adsorption on surfaces at the molecular level will provide us with the ability to design specific surfactants for surface modification. We conducted molecular dynamics simulations for sodium dodecyl sulfate (SDS) and hexaethylene glycol monododecyl ether (C(12)E(6)) adsorbed on silica substrates with varying degree of hydroxylation. Our results shed light on the effects of hydroxylation on the surfactant aggregate morphology. The discrete charge distribution on the substrate surface appears to dictate both surfactant adsorption and aggregate morphology. The differences in aggregate morphology observed for anionic SDS and non-ionic C(12)E(6) on silica substrates are discussed quantitatively and compared to available experimental data.  相似文献   

18.
Sweet and bitter tastes are known to be mediated by G-protein-coupled receptors. The relationship between the chemical structure of gustable molecules and their molecular organization in saliva (aqueous solution) near the surface of the tongue provides a useful tool for elucidating the mechanism of chemoreception. The interactions between stimulus and membrane receptors occur in an anisotropic system. They might be influenced by the molecular packing of gustable molecules within an aqueous solvent (saliva) close to the receptor protein. To investigate the molecular organization of a sweet molecule (sucrose), a bitter molecule (caffeine), and their mixture in an aqueous phase near a "wall", a hydrophobic phase, we modeled this using an air/liquid interface as an anisotropic system. The experimental (tensiometry and ellipsometry) data unambiguously show that caffeine molecules form an adsorption layer, whereas sucrose induces a desorption layer at the air/water interface. The adsorption of caffeine molecules at the air/water interface gradually increases with the volume concentration and is delayed when sucrose is added to the solution. Spectroscopic ellipsometry data show that caffeine in the adsorption layer has optical properties practically identical to those of the molecule in solution. The results are interpreted in terms of molecular association of caffeine with itself at the interface with and without sucrose in the subphase, using the theory of ideal gases.  相似文献   

19.
The forces of interaction between a silver-coated particle and a flat silver surface in an aqueous medium were measured in the presence of a series of organic amines of varying concentrations. Atomic force microscopy (AFM) was used to quantify the replacement rate of adsorbed citrate molecules on the silver surfaces by a variety of amines, under conditions where the time scale of the amine adsorption was significantly slower than the time scale of the AFM measurements. The decay length of the electrostatic double-layer interaction between the silver surfaces was found to be time independent; thus, the change in surface change density (determined from the interaction forces) was used to quantify the replacement rate of adsorbed citrate by amine. In the absence of amine, the interaction force between the silver surfaces exhibited evidence of a multilayer structure of adsorbed citrate molecules on each silver surface. Upon addition of the amine, a decrease in the interaction force was always observed, where the dynamics of the force were dependent on both concentration and the molecular structure of the amine. These results are discussed with respect to formation of colloidal particles in synthesis routes where particle aggregation has a significant impact on the control of particle morphology and size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号