首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated for the first time that the self-spreading of supported lipid bilayers can be controlled by the temporal switching of an electric field applied between nanogap electrodes. To account for this phenomenon, we propose an electrostatic trapping model in which an electric double layer plays an important role. The validity of this mechanism was verified by the dependence of self-spreading on the nanogap width and the ionic concentration of the electrolyte. Our results provide a promising tool for the temporal and spatial control of lipid bilayer formation for nanobio devices.  相似文献   

2.
The self-spreading dynamics of lipid bilayers were investigated at controlled electrolyte concentrations. The self-spreading velocity increased when the concentration of NaCl was increased from 1 to 100 mM. Comparing the experimentally determined spreading energy with that estimated from theoretical models, we found that the self-spreading dynamics were well explained by considering the van der Waals interaction, double layer interaction and hydration interaction energies between the self-spreading bilayer and the substrate. The characteristic behavior at high concentration is attributable to the increase in the density of the lipid layer, originating from the effective shielding of the molecular charges by the electrolyte ions in solution. The distribution of doped dye-labeled molecule within the spreading bilayer was also controllable by tuning the electrolyte concentration. All of these findings were explained by systematic changes in bilayer-substrate or inter-molecular interactions depending on the electrolyte concentration.  相似文献   

3.
We propose a microchannel device that employs a surface-supported self-spreading lipid bilayer membrane as a molecule carrying medium. The device has a micropattern structure fabricated on a SiO2 surface by photolithography, into which a self-spreading lipid bilayer membrane is introduced as the carrier medium. This system corresponds to a microchannel with a single lipid bilayer membrane height of approximately 5 nm, compared with conventional micro-fluidic channels that have a section height and width of at least several microm. The device is beneficial for detecting intermolecular interactions when molecules carried by the self-spreading lipid bilayer collide with each other in the microchannel. The validity of the device was confirmed by observing the fluorescence resonance energy transfer (FRET) between two dye molecules, coumarin and fluorescein.  相似文献   

4.
In this paper, we report on the preparation of an ionic polymer bead-supported lipid system several hundred micrometers in diameter. The electrostatic attractive interactions between anionic lipids and cationic polymer beads served as a "molecular glue" to immobilize the lipids on the beads, and then the immobilized lipids prompted the spontaneous formation of lipid bilayer membranes. Confocal fluorescence microscopic techniques revealed that the lipid bilayer membranes were located along the outline of the beads. In addition, the integrity of the lipid bilayer membranes was microscopically confirmed by a low-molecular-weight dye (trypan blue) exclusion test.  相似文献   

5.
Kist TB  Mandaji M 《Electrophoresis》2004,25(21-22):3492-3497
A large number of nanostructures have the potential to be used together with electrophoresis as separation media or separation additive in capillary electrophoresis, micellar electrokinetic chromatography, capillary electrochromatography, and other analytical techniques. Among those structures are nanotubes, nanocavities, nanowires, nanoposts, nanocones, nanospheres, molecular imprints, nanoparachutes (conical monodendrons), and general nanoparticles with random structures. This review is focused only on publications describing experimental works using molecular imprints, nanoposts, and nanospheres that are fabricated and applied for the purpose of separation media in electrophoresis-driven separations. The review follows an approximate chronological order in each section. As shown, the most popular are those resulting from molecular imprinting technologies. These biomimetic receptors are used in a great variety of fields, which includes electrophoresis, micellar electrokinetic chromatography, capillary electrochromatography, and other fields not reviewed in this work. A few examples of these other fields are, e.g., liquid chromatography, membranes, extractor or preconcentration techniques, immunosorbent assays, and sensing devices. The second topic scanned in the present work is the nanostructures that are used as obstacles to replace gels or polymers solutions in electrophoresis. Finally, the nascent field of nanospheres of gold and other materials as separation media is also reviewed.  相似文献   

6.
We have controlled the structure of self-spreading lipid bilayer membranes prepared on surface-oxidized silicon substrates by changing electrolyte concentration. Analysis of the fluorescence intensity, considering the optical interference effect, clarified the stacking structure of the lipid membrane. By varying the electrolyte concentration, we can vary the number of single multilamellar lobes adsorbed on the underlying self-spreading bilayer. This dependence of the stacking ability on the electrolyte concentration was investigated on the basis of changes in the bilayer-lobe interaction energies, including van der Waals, electrostatic double layer, and hydration interaction energies. Theoretical estimation suggests that the observed electrolyte concentration dependence can be explained by the combination of the van der Waals attractive interaction energy and the repulsive double-layer interaction energy.  相似文献   

7.
Diffusion of target molecules incorporated in the self-spreading lipid bilayer was controlled by the introduction of periodic array of metallic architecture on solid surface. Retardation of the progress of target molecules became significant when the size of gap between small metal architectures was less than a few hundred nanometers. The self-spreading dynamics of the lipid bilayer depending on the size of the small gap were analyzed semiquantitatively. Estimated change in the driving force of the spreading layer suggests that highly localized compression of the spreading layer causes selective segregation of molecules.  相似文献   

8.
Recently, lipid bilayers supported on solid substrates are considered to offer potential as biological devices utilizing biological membranes and membrane proteins. In particular, artificially patterned supported bilayers hold great promise for the development of biological devices. In this study, we show control of the formation and location of phase-separated domain structures by light irradiation for gel phase and liquid-crystalline phase separation structures in a DMPC-DOPC binary lipid bilayer tagged with dye molecules on SiO2/Si substrates. Upon light irradiation, the gel phase domain structures disappeared from the phase-separated bilayers. This disappearance indicates that the light irradiation causes a local increase in the temperature of the lipid bilayer. In this disappearance phenomenon, the photoinduced activation of dye lipids, e.g. fluorescent lipids, is considered to play an important role, since the same phenomenon does not occur in lipid bilayers that have a low concentration of dye lipids. Thus, the local increase in temperature is propagated by light absorption of the dye lipid and subsequent photoinduced activation of nonradiative molecular vibrations. Subsequent interruption of the photoinduced activation for molecular motion allowed the gel phase domain structures to precipitate and grow again. Moreover, the domain area fraction remaining after the photoinduced activation was higher than that before the photoinduced activation. This result indicates that the local increase in temperature propagated by dye-excitation enhances formation of the gel phase domains. By utilizing this phenomenon, we could preferentially induce formation of domain structures within the light-irradiated regions. This technique could be the basis for a new patterning technique based on domain structures. Moreover, these domain structure patterns can be eliminated by increasing the temperature, allowing rewritable patterning.  相似文献   

9.
双层类脂膜及其在电化学生物传感器中的应用   总被引:11,自引:0,他引:11  
罗立强  杨秀荣 《分析化学》2000,28(9):1165-1171
详细评述了各种双层类脂膜包括传统的双层类脂膜(BLM)、固体载体支撑的自组双层类脂膜(s-BLM)、固体载体支撑的混合双层类脂膜(e-BLM)的制备方法和特性,比较了其优缺点。介绍了双层类脂膜在电化学生物传感器中的应用,并展望了发展前景。  相似文献   

10.
屈锋  邓玉林  张玉奎 《色谱》2006,24(6):545-550
脂质体具有与细胞膜相似的封闭双层结构,是接近天然生物膜的理想模型。该文综述了脂质体的制备和性质表征方法,固定脂质体色谱用于药物在脂质体膜上的吸收和蛋白质与脂质体膜的相互作用研究,脂质体毛细管电泳在药物分离、蛋白质分离和蛋白质相互作用方面的应用研究。  相似文献   

11.
We report on the self-spreading behavior of a supported lipid bilayer (SLB) on a silicon surface with various 100 nm nanostructures. SLBs have been successfully grown from a small spot of a lipid molecule source both on a flat surface and uneven surfaces with 100 nm up-and-down nanostructures. After an hour, the self-spreading SLB forms a large circle or an ellipse depending on the nanostructure pattern. The results are explained by a model that shows that a single-layer SLB grows along the nanostructured surfaces. The model is further supported by a quantitative analyses of our data. We also discuss the stability of the SLB on nanostructured surfaces in terms of the balance between its bending and adhesion energies.  相似文献   

12.
In this commentary, we focused our attention on capillary electrophoresis. It achieves the efficient separation of molecular species by the application of high voltages to samples in solution. Actually, capillary electrophoresis can be performed on microchip devices, based on an automated and miniaturized electrophoresis system, based on lab‐on‐a‐chip technology. By this technology it is possible to separate nucleic acid fragments (DNA or RNA) with respect to sizing accuracy and sizing resolution. Currently, two automated capillary electrophoresis on microchips devices are available: the Agilent 2100 Bioanalyzer and the Experion? Automated Electrophoresis System. In this study, we evaluated if the CE is able to distinguish the three uridine diphosphate glucuronosyltransferase 1A1 TATA‐box genotypes.  相似文献   

13.
The use of mass spectrometry based on atmospheric pressure ionisation techniques (atmospheric pressure chemical ionisation, APCI, and electrospray ionisation, ESI) for speciation analysis is reviewed with emphasis on the literature published in and after 1999. This report accounts for the increasing interest that atmospheric pressure ionisation techniques, and in particular ESI, have found in the past years for qualitative and quantitative speciation analysis. In contrast to element-selective detectors, organic mass spectrometric techniques provide information on the intact metal species which can be used for the identification of unknown species (particularly with MS–MS detection) or the confirmation of the actual presence of species in a given sample. Due to the complexity of real samples, it is inevitable in all but the simplest cases to couple atmospheric pressure MS detection to a separation technique. Separation in the liquid phase (capillary electrophoresis or liquid chromatography in reversed phase, ion chromatographic or size-exclusion mode) is particularly suitable since the available techniques cover a very wide range of analyte polarities and molecular mass. Moreover, derivatisation can normally be avoided in liquid-phase separation. Particularly in complex environmental or biological samples, separation in one dimension is not sufficient for obtaining adequate resolution for all relevant species. In this case, multi-dimensional separation, based on orthogonal separation techniques, has proven successful. ESI-MS is also often used in parallel with inductively coupled plasma MS detection. This review is structured in two parts. In the first, the fundamentals of atmospheric pressure ionisation techniques are briefly reviewed. The second part of the review discusses recent applications including redox species, use of ESI-MS for structural elucidation of metal complexes, characterisation and quantification of small organometallic species with relevance to environment, health and food. Particular attention is given to the characterisation of biomolecules and metalloproteins (metallothioneins and phytochelatins) and to the investigation of the interaction of metals and biomolecules. Particularly in the latter field, ESI-MS is the ideal technique due to the softness of the ionisation process which allows to assume that the detected gas-phase ions are a true representation of the ions or ion–biomolecule complexes prevalent in solution. It is particularly this field, important to biochemistry, physiology and medical chemistry, where we can expect significant developments also in the future.  相似文献   

14.
Microfluidic chip electrophoresis has been widely employed for separation of various biochemical species owing to its advantages of low sample consumption, low cost, fast analysis, high throughput, and integration capability. In this article, we reviewed the development of four different modes of microfluidics‐based electrophoresis technologies including capillary electrophoresis, gel electrophoresis, dielectrophoresis, and field (electric) flow fractionation. Coupling detection schemes on microfluidic electrophoresis platform were also reviewed such as optical, electrochemical, and mass spectrometry method. We further discussed the innovative applications of microfluidic electrophoresis for biomacromolecules (nucleic acids and proteins), biochemical small molecules (amino acids, metabolites, ions, etc.), and bioparticles (cells and pathogens) analysis. The future direction of microfluidic chip electrophoresis was predicted.  相似文献   

15.
郝斐然  付斌  张养军  钱小红 《色谱》2015,33(12):1226-1233
基于电迁移的蛋白质制备技术是对一类分离和制备技术的统称,其特征是在电场的作用下对目标物质进行分离和纯化制备,这种技术在生物大分子和蛋白质组的研究中应用广泛。基于电迁移的制备技术主要包括制备型电泳、制备型电色谱、制备型等电聚焦和自由流电泳等。本文对每种制备型电迁移装置的设计、特点和基于该种装置的各种应用方法的优缺点进行了详细阐述,并列举了一些实例。另外,微量级制备型电泳因分离度高、回收率高以及高效快速的优点,在微量级生物样本分析中发挥着日益重要的作用,近年来备受关注,本文也着重关注了这方面的进展,并对基于电迁移的制备技术做了展望。  相似文献   

16.
Szántai E  Guttman A 《Electrophoresis》2006,27(24):4896-4903
In the past few years, electrophoresis microchips have been increasingly utilized to interrogate genetic variations in the human and other genomes. Microfluidic devices can be readily applied to speed up existing genotyping protocols, in particular the ones that require electric field-mediated separations in conjunction with restriction fragment analysis, DNA sequencing, hybridization-based techniques, allele-specific amplification, heteroduplex analysis, just to list the most important ones. As a result of recent developments, microfabricated electrophoresis devices offer several advantages over conventional slab-gel electrophoresis, such as small sample volume requirement, low reagent consumption, the option of system integration and easy multiplexing. The analysis speed of microchip electrophoresis is significantly higher than that of any other electric field-mediated separation techniques. State-of-the-art microfluidic bioanalytical devices already claim their place in most molecular biology laboratories. This review summarizes the recent developments in microchip electrophoresis methods of nucleic acids, particularly for rapid genotyping, that will most likely play a significant role in the future of clinical diagnostics.  相似文献   

17.
场发射在扫描电子显微镜、平面显示器、压力传感器、加速度传感器以及电子束可寻址记忆器件等许多领域中得到了广泛的应用,分子基材料由于其结构和能带可设计,性质可调和柔性易加工等显著特点,被认为是新一代的场发射材料。本文综述了近年来分子基材料聚集态结构的场发射性质研究的新进展,特别是分子基材料的结构和聚集态形貌和尺寸对场发射性质的影响以及通过对分子基材料的杂化优化其场发射的性质,展望了分子基材料聚集态结构场发射的应用前景和发展趋势。  相似文献   

18.
The molecular distribution and spreading dynamics of self-spreading lipid bilayers can be tuned by surface-modified metallic nanoarchitectures. Interactions between lipids and molecules in the surface modification alter the self-spreading behavior at the gate regions between adjacent nanoarchitectures, leading to molecular filtering/concentrating effects and modification of the dynamics. The hydrophilic surface can tune the spreading velocity without changing the molecular distribution in the spreading bilayer, whereas the hydrophobic surface provides a molecular concentrating function to the nanogates. This indicates that a combination of unmodified/hydrophobic/hydrophilic nanoarchitectures has a wide range of potential applications since it can be used to independently control the self-spreading dynamics and the molecular distribution.  相似文献   

19.
In the present paper, a critical overview of the most commonly used techniques for the characterization and the determination of carbon nanotubes (CNTs) is given on the basis of 170 references (2000–2014). The analytical techniques used for CNT characterization (including microscopic and diffraction, spectroscopic, thermal and separation techniques) are classified, described, and illustrated with applied examples. Furthermore, the performance of sampling procedures as well as the available methods for the determination of CNTs in real biological and environmental samples are reviewed and discussed according to their analytical characteristics. In addition, future trends and perspectives in this field of work are critically presented.  相似文献   

20.
Applicability of modern microfabrication technology to electrophoresis microchips initiated a rapidly moving interdisciplinary field in analytical chemistry. Electric field mediated separations in microfabricated devices (electrophoresis microchips) are significantly faster than conventional gel electrophoresis, usually completed in seconds to minutes. Electrophoretic separation of DNA molecules on microfabricated devices proved to have the potential to improve the throughput of analysis by orders of magnitude. The flexibility of electrophoresis microchips allows the use of a plethora of separation matrices and conditions. In this paper, we report on electric field mediated separation of fluorescent intercalator-labeled dsDNA fragments in polyvinylpyrrolidone matrix-filled microchannel structures. The separations were detected in real time by a confocal, single-point laser-induced fluorescence/photomultiplier setup. Effects of the sieving matrix concentration (Ferguson plot), migration characteristics (reptation plot), separation temperature (Arrhenius plot), as well as applied electric field strength and intercalator concentration on the separation of DNA fragments are thoroughly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号