首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 62 毫秒
1.
针对Isomap-NFINDR端元提取算法复杂度高、占用内存多、效率低的缺点,提出一种基于标志点选择Isomap的快速端元提取算法。该方法采用最大最小距离法来选取初始的K个聚类中心点,并采用光谱夹角距离SAD代替欧式距离来进行聚类分割;根据图像的空间特性,从去除聚类的边界点后剩余点间隔抽取距离聚类中心距离最小的N个点作为标志点。真实高光谱图像实验结果表明,提出的算法精度接近原始的基于Isomap-NFINDR算法,而效率提高了将近60倍。  相似文献   

2.
一种基于离散粒子群优化算法的高光谱图像端元提取方法   总被引:2,自引:0,他引:2  
针对混合像元分解过程中,由于数据噪声引起的端元提取不准确问题,引入了群智能算法中的粒子群优化算法,并对粒子群优化算法进行了改进,重新定义了位置和速度的表示方法和更新策略,得到离散粒子群优化(discrete particle swarm optimization,D-PSO),能够在离散空间中进行搜索,解决组合优化问题。同时,通过定义目标函数和可行解空间,将端元提取问题改写成组合优化问题,最终实现利用D-PSO进行端元提取。在给出算法的详细流程之后,文章通过一组模拟数据实验和一组实际数据实验验证了D-PSO算法对于具有较大噪声的数据的适应性和提取端元的可信程度,并分析了不同参数对于算法性能的影响。  相似文献   

3.
端元提取技术在高光谱图像压缩中的应用   总被引:3,自引:0,他引:3  
高光谱图像海量数据如何实现大比例有效压缩是限制其应用的主要问题之一,而现有有损压缩方法存在大压缩比与光谱特性信息准确保留的矛盾,即使现有最优有损压缩方法也不能够得到令人满意的结果。文章基于混合像元分解的思想提出基于端元提取技术的数据有损压缩方法来解决该矛盾,首先用顶点成分分析(VCA)方法提取场景中地物的端元光谱,根据各端元与观测像元之间的光谱间余弦角相似性度量方法估计各端元的丰度,接着对端元光谱及丰度数据进行无损压缩,最后利用JPEG2000有损压缩方法对高光谱图像的所有单波段图像进行空间维大比例有损压缩。AVIRIS高光谱图像的仿真结果表明,压缩比得到大幅度提高,光谱信息得到有效恢复。在实现压缩比为50∶1时,大部分像元的光谱角误差在2%左右。  相似文献   

4.
王瀛  梁楠  郭雷 《光子学报》2014,(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能.本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cuprite地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

5.
王瀛  梁楠  郭雷 《光子学报》2012,41(6):672-677
形态学算子反映了像素的空间相关性信息,将其应用于高光谱遥感图像端元提取可以有效地提升算法性能,本文针对已经普遍用于高光谱遥感图像端元提取的扩展形态学算子在像元排序规则和替换准则上存在的局限性,引入了基准向量的概念并给出计算方法,提出了修正扩展形态学算子.修正后的排序规则和替换准则避免了图像中不同类别交界处的交叉替换现象,保证了正确的覆盖方向,是提高端元提取效果的关键步骤.通过修正扩展形态学算子的基本膨胀和腐蚀运算,定义了相应的开-闭运算和闭-开运算,由此得出了端元判定向量,并给出端元提取算法的详细流程.基于扩展形态学的自动端元提取算法可以综合考虑光谱和空间信息,端元提取效果优于仅依靠光谱信息的算法.算法由IDL7.0实现,并在AVIRIS于Cupritc地区的高光谱遥感图像上进行实验,实验结果从光谱曲线相似性、端元平均相似度和相应地物分布图等方面证明了算法的有效性.  相似文献   

6.
寻丽娜  方勇华 《光子学报》2006,35(10):1584-1588
针对高光谱图像中小目标检测问题,提出了一种投影寻踪结合遗传算法的目标检测方法.该方法采用对异常分布敏感的偏度和峰度作为投影指标,实数编码的加速遗传算法搜索最佳投影方向.利用高光谱数据对所提出的方法进行了实验研究.结果表明,该方法能够快速、可靠的检测出小目标.  相似文献   

7.
光谱最小信息熵的高光谱影像端元提取算法   总被引:3,自引:0,他引:3  
端元提取是混合像元分解的关键,研究其算法在高精度的地物识别、丰度反演和定量遥感等方面具有重要意义。通过研究高光谱遥感影像光谱特征,结合信息熵理论,应用高斯分布函数,建立了一种新的高光谱影像端元提取算法,即光谱最小信息熵(spectral minimum shannon entropy,SMSE)算法。将该算法应用于AVRIRS高光谱影像的端元光谱提取,并经过与美国地质勘探局(United States Geological Survey,USGS)波谱库中的数据匹配,得知其提取端元的精度较高。同时,通过与经典的纯净像元指数(pixel purity index,PPI)和连续最大角凸锥(sequential maximum angle convex cone,SMACC)等端元提取算法进行实验比较和结果综合分析,发现光谱最小信息熵算法提取端元光谱效率更高、精度更好。此外,分别利用SMACC和SMSE提取Hyperion高光谱影像端元,得出SMSE的端元提取效果好于SMACC,从而可认为SMSE算法具有一定普适性。  相似文献   

8.
提出了一种基于最大化N维立体光谱角(Maximum N-dimensional Solid Spectral Angle,MNSSA)的端元提取方法.该方法通过计算N个光谱向量在高维欧几里得空间的光谱夹角,定量衡量该N个光谱向量的独立性.在线性混合模型假设下,端元光谱向量的欧几里得空间夹角大于混合像素构成的夹角.MNSSA法不受待提取端元数目及波段数目的限制,对光谱向量幅值变化不敏感,能够克服阴影及光照因素对端元幅值的影响.使用模拟数据及AVIRIS(Airborne Visible/Infrared Imaging Spectrometer)获取的真实高光谱数据对MNSSA端元提取法及现有基于几何的端元提取法进行了对比评价.仿真结果表明,MNSSA法能够克服阴影影响因子对端元幅值的影响,端元提取准确率优于现有端元提取法,且具有良好的抗噪声性能,能显著降低高光谱数据的重构误差.  相似文献   

9.
溢油覆盖度的估测是海洋溢油探测与灾害评估的重要内容,受航空航天传感器地面分辨率的限制,准确探测溢油覆盖度比较困难。在海洋风浪及破碎波作用下,溢油往往呈条带状分布。获取的高光谱数据中存在大量的油、水混合像元;传统图像分割方式计算溢油面积存在偏差,且受传感器角度、高度等影响,光谱变异明显,传统端元提取方法很难找到纯像元光谱。提出了一种通过分区混合端元计算海洋溢油覆盖度的探测方法。首先对影像进行分区并使用N-FINDR算法进行端元预选;然后再利用独立分量分析(ICA)方法进行端元精选,按照负熵最大输出得到候选端元,并将地面同步参考光谱作为约束引入相似性溢油端元识别;最后基于非负矩阵分解方法(NMF)求取端元丰度,通过太阳耀斑区的修正,得到真实的溢油覆盖度。分区混合端元的提取较好的解决了全局端元变异及环境适应性差的问题,使精选后的端元具有更好的环境鲁棒性。为更好地衡量该算法精度,采用仿真数据与真实高光谱影像数据相结合进行实验验证。仿真实验中,人工设定溢油丰度,使用均方根误差(RMSE)和丰度估计误差对比评估估计丰度与设定丰度之间的差别,并设计了算法适应性和抗噪实验。结果表明采用MNF和ICA两种高光谱压缩方法,丰度估计误差均低于3%,重构图像的最小均方根误差RMSE最高为0.030 6,且具有较好的抗噪能力,验证了该算法的有效性。真实实验中,使用2011年山东长岛溢油8景机载高光谱影像数据为真实测试数据,由于真实遥感数据往往缺失地面同步丰度数据,导致对算法精度进行评价比较困难,使用仿真数据交互验证与目视解译数据相结合的方法进行精度评价,通过耀斑区修正后估测的机载高光谱成像总的溢油覆盖面积为1.17 km2,溢油覆盖度为22.85%,与现场人工估测面积偏差为2.15%,明显高于传统方法。受海洋破碎波、光谱变异性影响,和航空航天遥感器地面分辨率的限制,海洋溢油遥感中单个像元进行丰度解析是一个难题。基于亚像元丰度分解思想,讨论了海洋溢油覆盖度的问题,提出一种较为完善的海洋溢油覆盖度的计算办法,通过仿真数据和实际的高光谱溢油数据进行了方法的验证,实现了较为客观的自动化溢油覆盖度(丰度)探测方法,可以较为准确的估测海洋溢油的覆盖度,对溢油遥感面积的业务化探测具有积极意义。  相似文献   

10.
苹果轻微机械损伤高光谱图像无损检测   总被引:2,自引:0,他引:2  
无损检测是高光谱遥感应用研究热点之一。苹果在采摘、运输过程中易发生轻微机械损伤而影响其品质。使用高光谱成像系统分别采集54个轻微损伤的“黄香蕉”与“烟台富士”苹果可见-近红外波段(400~1 000 nm)的图像,提取苹果损伤区域的均值波谱曲线,对其进行最小噪声分离变换和基于几何顶点端元原理提取端元波谱,计算损伤区域波谱和端元波谱的光谱角,构建了端元提取光谱角苹果轻微机械损伤检测模型。通过设定光谱角阈值分别检测“黄香蕉”与“烟台富士”苹果轻微机械损伤,并与MNF变换、PCA方法检测精度进行对比分析,结果表明EESA模型检测苹果轻微机械损伤的精度最高,检测正确率分别达到94.44%和90.07%。  相似文献   

11.
端元光谱提取是高光谱影像混合像元分解的关键。现有的端元提取方法多是仅利用了影像的光谱信息,忽略了像元间的空间相关性。现有研究基础上,提出了一种结合影像空间和光谱信息的高光谱影像端元光谱自动提取方法(integration of spatial-spectral information based endmember extraction,ISEE)。该方法首先进行影像子空间划分以增强影像局部的光谱信息特征,然后通过特征空间投影分析获得影像候选端元,最后依次在影像空间信息约束下和端元光谱信息约束下进行优化,得到最终的影像端元光谱集。仿真高光谱影像和真实高光谱影像的实验结果表明,结合影像空间和光谱信息的ISEE方法是有效的,且比一些常用方法提取的端元光谱更为准确。  相似文献   

12.
背景高斯化的遥感图像目标检测   总被引:1,自引:0,他引:1  
在假设单一地表遥感图像灰度起伏符合马尔可夫模型的条件下,得到了理想单一地表灰度起伏符合高斯分布的结果。将这一结果应用于遥感图像的目标检测,提出了一种新的基于背景高斯化的遥感图像目标检测方法。该方法首先将遥感图像进行高斯化处理,将其作为近似理想背景,然后将原图像与高斯化背景做差得到残差图,进而对残差图进行目标检测。由于目标本身的信息远离背景高斯化模型,因此在背景消减的过程中,目标信息得到了很好的保持,比在原图上进行目标检测性能得到了很大的提高。实验结果进一步验证了算法具有很好的检测性能。  相似文献   

13.
一种基于光谱奇异值检测的高光谱遥感小目标探测方法   总被引:4,自引:1,他引:3  
高光谱遥感技术能够借助丰富的地物图像和光谱信息,反映目标地物与背景地物间的细微差异,从而将其区分开来。目前的小目标探测算法多侧重于从图像处理方面着手,文章则从光谱维数据分析的角度出发,利用光谱分析中的奇异值检测方法探测小目标,首先对关注区域的地物像元光谱进行连续统去除和正交变换等预处理;然后将每个像元的光谱对该区域平均光谱进行光谱匹配求其相似性,并实现高光谱数据降维;而后通过光谱角匹配值的马氏距离进行奇异值检测,将马氏距离大于自适应阈值的像元判定为小目标。该方法不需要任何先验信息,实验结果表明该方法运算量较小,运算速度快,并有较好的小目标探测准确度。  相似文献   

14.
基于分类的红外云层背景弱小目标检测方法   总被引:3,自引:2,他引:1  
提出了一种新的基于模糊分类的红外云层背景弱小目标检测方法.根据红外成像的特点,将红外云层背景弱小目标图像分为三类:边缘类、净空及云中类、弱小目标类;对不同类别图像进行分析,建立了分类模型,并定义了方向特征矢量,将其作为类别的特征矢量;根据模糊分类的理论,定义了类相似系数来判别图像中每一个像素的类别属性,保留弱小目标类的像素点完成检测.实验结果表明,该方法能够对红外弱小目标图像中不同类型的区域进行准确的分类,从而较好的实现了对低信杂比的复杂云层背景图像中的弱小目标检测.  相似文献   

15.
基于改进型相关向量机的高光谱图像分类   总被引:2,自引:0,他引:2  
赵春晖  齐滨  张燚 《光学学报》2012,32(8):828004-269
相关向量机(RVM)高光谱图像分类算法是一种基于贝叶斯概率模型的监督机器学习算法,其分类精度较高、测试时间较短。然而算法本身存在训练时间随着训练样本增加直线上升、分类效率整体降低等问题。针对这种情况,提出一种基于改进型相关向量机(VRVM)的高光谱图像分类算法。本算法在传统概率模型中引入一个新的分布,使得计算复杂度较高的积分运算可近似地拆分成两个较为简单的对数和形式。实验结果表明,VRVM高光谱图像分类算法的总体分类精度和相关向量的数量与RVM基本相同,但训练时间随样本数的增加有明显的减少。  相似文献   

16.
基于流形学习和空间信息的改进N-FINDR端元提取算法   总被引:3,自引:0,他引:3  
光谱端元提取是对高光谱数据进一步分析的重要前提。由于双向反射分布函数(BRDF),像元内的多重散射和亚像元成分的异质性等因素,高光谱图像中的混合像元实际上是非线性光谱混合。传统的端元提取算法是以线性光谱混合模型为基础,因此提取的端元精度不高。在光谱非线性混合的基础上,提出一种将流形学习与空间信息结合的改进N-FINDR端元提取算法。首先通过自适应的局部切空间排列算法寻找嵌入在高维非线性数据空间的本质的低维结构,将原始高光谱数据非线性降维到低维空间。接着利用地物分布具有连续性的特点,通过增大空间同质区域的像元的权重进行空间预处理。最后通过寻找最大单形体体积进行端元提取。提出算法很好的解决了高光谱遥感数据非线性结构,并利用了空间信息,提高了端元提取的精度。模拟数据实验和真实高光谱遥感数据实验结果均表明,采用该算法得到的结果优于顶点成分分析(VCA) 算法、基于测地线距离的最大单形体体积(GSVM)算法和空间预处理的N-FINDR(SPPNFINDR)算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号