首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bacterial bioluminescence (BL) has been successfully applied in water‐quality monitoring and in vivo imaging. The attention of researchers has been attracted for several decades, but the mechanism of bacterial BL is still largely unknown due to the complexity of the multistep reaction process. Debates mainly focus on three key questions: How is the bioluminophore produced? What is the exact chemical form of the bioluminophore? How does the protein environment affect the light emission? Using quantum mechanics (QM), combined QM and molecular mechanics (QM/MM) and molecular dynamic (MD) calculations in gas‐phase, solvent and protein environments, the entire process of bacterial BL was investigated, from flavin reduction to light emission. This investigation revealed that: 1) the chemiluminescent decomposition of flavin peroxyhemiacetal does not occur through the intramolecular chemical initiated electron exchange luminescence (CIEEL) or the “dioxirane” mechanism, as suggested in the literature. Instead, the decomposition occurs according to the charge‐transfer initiated luminescence (CTIL) mechanism for the thermolysis of dioxetanone. 2) The first excited state of 4a‐hydroxy‐4a,5‐dihydroFMN (HFOH) was affirmed to be the bioluminophore of bacterial BL. This study provides details regarding the mechanism by which bacterial BL is produced and is helpful in understanding bacterial BL in general.  相似文献   

2.
Bioluminescence is produced by a broad range of organisms for defense, predation or communication purposes. Southern elephant seal (SES) vision is adapted to low‐intensity light with a peak sensitivity, matching the wavelength emitted by myctophid species, one of the main preys of female SES. A total of 11 satellite‐tracked female SESs were equipped with a time‐depth‐light 3D accelerometer (TDR10‐X) to assess whether bioluminescence could be used by SESs to locate their prey. Firstly, we demonstrated experimentally that the TDR10‐X light sensor was sensitive enough to detect natural bioluminescence; however, we highlighted a low‐distance detection of the sensor. Then, we linked the number of prey capture attempts (PCAs), assessed from accelerometer data, with the number of detected bioluminescence events. PCA was positively related to bioluminescence, which provides strong support that bioluminescence is involved in predator–prey interactions for these species. However, the limitations of the sensor did not allow us to discern whether bioluminescence (i) provided remote indication of the biological richness of the area to SES, (ii) was emitted as a mechanic reaction or (iii) was emitted as a defense mechanism in response to SES behavior.  相似文献   

3.
Aequorea victoria is a type of jellyfish that is known by its famous protein, green fluorescent protein (GFP), which has been widely used as a probe in many fields. Aequorea has another important protein, aequorin, which is one of the members of the EF‐hand calcium‐binding protein family. Aequorin has been used for intracellular calcium measurements for three decades, but its bioluminescence mechanism remains largely unknown. One of the important reasons is the lack of clear and reliable knowledge about the light emitters, which are complex. Several neutral and anionic forms exist in chemiexcited, bioluminescent, and fluorescent states and are connected with the H‐bond network of the binding cavity in the protein. We first theoretically investigated aequorin chemiluminescence, bioluminescence, and fluorescence in real proteins by performing hybrid quantum mechanics and molecular mechanics methods combined with a molecular dynamics method. For the first time, this study reported the origin and clear differences in the chemiluminescence, bioluminescence and fluorescence of aequorin, which is important for understanding the bioluminescence not only of jellyfish, but also of many other marine organisms (that have the same coelenterazine caved in different coelenterazine‐type luciferases).  相似文献   

4.
A novel luciferin from a bioluminescent Siberian earthworm Fridericia heliota was recently described. In this study, the Fridericia oxyluciferin was isolated and its structure elucidated. The results provide insight into a novel bioluminescence mechanism in nature. Oxidative decarboxylation of a lysine fragment of the luciferin supplies energy for light generation, while a fluorescent CompX moiety remains intact and serves as the light emitter.  相似文献   

5.
6.
Photodynamic therapy (PDT) of cancer is known for its limited number of side effects, and requires light, oxygen and photosensitizer. However, PDT is limited by poor penetration of light into deeply localized tissues, and the use of external light sources is required. Thus, researchers have been studying ways to improve the effectiveness of this phototherapy and expand it for the treatment of the deepest cancers, by using chemiluminescent or bioluminescent formulations to excite the photosensitizer by intracellular generation of light. The aim of this Minireview is to give a précis of the most important general chemi‐/bioluminescence mechanisms and to analyze several studies that apply them for PDT. These studies have demonstrated the potential of utilizing chemi‐/bioluminescence as excitation source in the PDT of cancer, besides combining new approaches to overcome the limitations of this mode of treatment.  相似文献   

7.
8.
The ground and excited state properties of luciferin (LH2) and oxyluciferin (OxyLH2), the bioluminescent chemicals in the firefly, have been characterized using density functional theory (DFT) and time dependent DFT (TDDFT) methods. The effects of solvation on the electronic absorption and emission spectra of luciferin and oxyluciferin were predicted with a self‐consistent isodensity polarized continuum model of the solvent using TDDFT. The S0→S1 vertical excitation energies in the gas phase and in water were obtained. Optimizations of the excited state geometries permitted the first predictions of the fluorescence spectra for these biologically important molecules. Shifts in both of the absorption and emission spectra on proceeding from the gas phase to aqueous solution were also predicted.  相似文献   

9.
3D打印(亦称增材制造)技术因其独特的材料成型优势,在组织工程、航空航天、汽车制造、以及电子工业等众多领域显示出巨大的应用潜力。然而,在实际生物医学应用中,3D打印生物器件和组织器官除了要求具有复杂的结构和优异的生物学性能外,其打印结构的表面性质也需满足某些特定的要求,如3D打印组织骨架和器官必须具有生物相容性、抗菌性及细胞粘附性等。因此,将3D打印与传统表面修饰技术相结合,在不改变材料三维结构的基础上调控其表面生物化学性质,从而赋予3D打印生物骨架器官多功能化,可实现更为广泛的应用。本文以3D打印生物骨架及器官的表面修饰为主要内容对就近年来3D打印生物医用材料的最新研究进展进行了综述。  相似文献   

10.
Infection by bacteria is one of the main problems in health. The use of commercial antibiotics is still one of the treatments to overcome these problems. However, high levels of consumption lead to antibiotic resistance. Several types of antibiotics have been reported to experience resistance. One solution that can be given is the use of natural antibacterial products. There have been many studies reporting the potential antibacterial activity of the Ocimum plant. Ocimum is known to be one of the medicinal plants that have been used traditionally by local people. This plant contains components of secondary metabolites such as phenolics, flavonoids, steroids, terpenoids, and alkaloids. Therefore, in this paper, we will discuss five types of Ocimum species, namely O. americanum, O. basilicum, O. gratissimum, O. campechianum, and O. sanctum. The five species are known to contain many chemical constituents and have good antibacterial activity against several pathogenic bacteria.  相似文献   

11.
Photoluminescent materials have been extensively applied in various fields of science because of their numerous advantages, such as excellent sensitivity, good specificity, a large linear range of analysis, ease of handling, and so on. Many strategies have been used to understand and manipulate the photophysical properties of photoluminescent materials. This Focus Review describes recent progress focused on tuning the photophysical properties, especially the emission wavelengths of π‐conjugated oligomers, photoluminescent organometallic complexes, and fluorescent organic dyes by chemical modification.  相似文献   

12.
Doublet emission from open-shell molecules has demonstrated its research and application value in recent years. However, understandings of the photoluminescence mechanism of open-shell molecules are far less than that of closed-shell molecules, leading to challenges in molecular design of efficient doublet emission systems. Here we report a cerium(III) 4-(9H-carbozol-9-yl)phenyl-tris(pyrazolyl)borate complex Ce(CzPhTp)3 with a new luminescence mechanism of delayed doublet emission, which also represents the first example with metal-centered delayed photoluminescence. The energy gap between the doublet and triplet excited states of Ce(CzPhTp)3 is reduced by the management of the inner and outer coordination spheres, thereby promoting efficient energy transfer between the two excited states and activating the delayed emission. The photoluminescence mechanism discovered may provide a new way for the design of efficient doublet emission and bring insights into rational molecular design and energy level regulation in open-shell molecules.  相似文献   

13.
Medicinal plants have been used since antiquity to cure illnesses and injuries. In the last few decades, natural compounds extracted from plants have garnered the attention of scientists and the Camellia species are no exception. Several species and cultivars are widespread in Asia, namely in China, Japan, Vietnam and India, being also identified in western countries like Portugal. Tea and oil are the most valuable and appreciated Camellia subproducts extracted from Camellia sinensis and Camellia oleifera, respectively. The economic impact of these species has boosted the search for additional information about the Camellia genus. Many studies can be found in the literature reporting the health benefits of several Camellia species, namely C. sinensis, C. oleifera and Camellia japonica. These species have been highlighted as possessing antimicrobial (antibacterial, antifungal, antiviral) and antitumoral activity and as being a huge source of polyphenols such as the catechins. Particularly, epicatechin (EC), epigallocatechin (EGC), epicatechin-3-gallate (ECG), and specially epigallocatechin-3-gallate (EGCG), the major polyphenols of green tea. This paper presents a detailed review of Camellia species’ antioxidant properties and biological activity.  相似文献   

14.
15.
16.
Electrofluorochromic devices (EFCDs) that allow the modulation of the light emitted by electroactive fluorophores are very attractive in the research field of optoelectronics. Here, the electrofluorochromic behaviour of a series of squaraine dyes was studied for the first time. In solutions, all compounds are photoluminescent with maxima located in the range 665–690 nm, characterized by quantum yields ranging from 30% to 4.1%. Squaraines were incorporated in a polymer gel used as an active layer in all-in-one gel switchable EFCDs. An aggregation induced quenching occurs in the gel phase, causing a significant decrease in the emission quantum yield in the device. However, the squaraines containing the thieno groups (thienosquaraines, TSQs) show a panchromatic emission and their electrofluorochromism allows the tuning of the fluorescence intensity from 500 nm to the near infrared. Indeed, the application of a potential difference to the device induces a reversible quenching of their emission that is significantly higher and occurs at shorter switching times for TSQs-based devices compared to the reference squaraine dye (DIBSQ). Interestingly, the TSQs fluorescence spectral profile becomes more structured under voltage, and this could be explained by the shift of the aggregates/monomer equilibrium toward the monomeric species, due to electrochemical oxidation, which causes the disassembling of aggregates. This effect may be used to modulate the colour of the fluorescence light emitted by a device and paves the way for conceiving new electrofluorochromic materials based on this mechanism.  相似文献   

17.
新型蒽衍生物蓝光材料的合成及其光电性能   总被引:3,自引:0,他引:3  
新型蒽衍生物蓝光材料的合成及其光电性能;蒽;芴;电致发光  相似文献   

18.
We have investigated the photophysical properties of an organic dye (Congo Red) incorporated within the internal cavities of a dendrimer (type polypropylenimine of fifth-generation modified with a dense shell of amino acids). In this paper we show that the luminescence properties of Congo Red encapsulated into the "dendritic box" can be modulated by the electronic confinement effect. The emission frequencies of this organic dye incorporated within the dendritic structure can be red shifted with respect to their emission in solution, and the magnitude of this shifting can be modulated under appropriate experimental conditions.  相似文献   

19.
Combining the actuation of conducting polymers with additional functionalities is an interesting fundamental scientific challenge and increases their application potential. Herein we demonstrate the possibility of direct integration of a miniaturized light emitting diode (LED) in a polypyrrole (PPy) matrix in order to achieve simultaneous wireless actuation and light emission. A light emitting diode is used as a part of an electroactive surface on which electrochemical polymerization allows direct incorporation of the electronic device into the polymer. The resulting free-standing polymer/LED hybrid can be addressed by bipolar electrochemistry to trigger simultaneously oxidation and reduction reactions at its opposite extremities, leading to a controlled deformation and an electron flow through the integrated LED. Such a dual response in the form of actuation and light emission opens up interesting perspectives in the field of microrobotics.  相似文献   

20.
Three major hypotheses have been proposed to explain why dinoflagellate bioluminescence deters copepod grazing: startle response, aposematic warning, and burglar alarm. These hypotheses propose dinoflagellate bioluminescence (A) startles predatory copepods, (B) warns potential predators of toxicity, and (C) draws the attention of higher order visual predators to the copepod's location. While the burglar alarm is the most commonly accepted hypothesis, it requires a high concentration of bioluminescent dinoflagellates to be effective, meaning the bioluminescence selective advantage at lower, more commonly observed, dinoflagellate concentrations may result from another function (e.g. startle response or aposematic warning). Therefore, a series of experiments was conducted to evaluate copepod grazing (Acartia tonsa) on bioluminescent dinoflagellates (during bioluminescent and nonbioluminescent phases, corresponding to night and day, respectively) at different concentrations (10, 1000, and 3000 cells mL?1), on toxic (Pyrodinium bahamense var. bahamense) and nontoxic (Lingulodinium polyedrum) bioluminescent dinoflagellates, and in the presence of nonluminescent diatoms (Thalassiosira eccentrica). Changes in copepod ingestion rates, clearance rates, and feeding preferences as a result of these experimental factors, particularly during the mixed trails with nonluminescent diatoms, indicate there is a concentration threshold at which the burglar alarm becomes effective and below which dinoflagellate bioluminescence functions as an aposematic warning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号