首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodynamic therapy (PDT) uses laser light to activate a photosensitizer that has been absorbed preferentially by cancer cells after systemic administration. A photo-toxic reaction ensues resulting in cell death and tissue necrosis. Some cells, however, may survive PDT. This study was performed to determine if surviving human breast cancer cells (MCF-7) can become resistant to PDT, chemotherapy or radiotherapy. The MCF-7 cells were cultured under standard conditions prior to being exposed to the photosensitizer, 5,10,15,20-meta-tet-ra(hydroxyphenyl)chlorin (zn-THPC), for 24 h and then irradiated with laser light (652 nm). Surviving cells were allowed to regrow by allowing a 2 week interval between each additional PDT. After the third and final treatment, colony formation assays were used to evaluate the sensitivity of cultured cells to ionizing radiation and PDT and the ATP cell viability assay tested in vitro chemosen-sitivity. Flow cytometry was used to analyze the cell cycle. No alterations in the cell cycle were observed after three cycles of PDT with m-THPC. Similar responses to chemotherapy and ionizing radiation were seen in control and treatment groups. The m-THPC-sensitized PDT did not induce resistance to subsequent cycles of PDT, chemo- or radiotherapy. Photodynamic therapy with m-THPC may represent a novel adjunctive treatment of breast cancer that may be combined with surgery, chemotherapy or ionizing radiation.  相似文献   

2.
Breast tumors were the first tumors of epithelial origin shown to follow the cancer stem cell model. The model proposes that cancer stem cells are uniquely endowed with tumorigenic capacity and that their aberrant differentiation yields non-tumorigenic progeny, which constitute the bulk of the tumor cell population. Breast cancer stem cells resist therapies and seed metastases; thus, they account for breast cancer recurrence. Hence, targeting these cells is essential to achieve durable breast cancer remissions. We identified compounds including selective antagonists of multiple serotonergic system pathway components required for serotonin biosynthesis, transport, activity via multiple 5-HT receptors (5-HTRs), and catabolism that reduce the viability of breast cancer stem cells of both mouse and human origin using multiple orthologous assays. The molecular targets of the selective antagonists are expressed in breast tumors and breast cancer cell lines, which also produce serotonin, implying that it plays a required functional role in these cells. The selective antagonists act synergistically with chemotherapy to shrink mouse mammary tumors and human breast tumor xenografts primarily by inducing programmed tumor cell death. We hypothesize those serotonergic proteins of diverse activity function by common signaling pathways to maintain cancer stem cell viability. Here, we summarize our recent findings and the relevant literature regarding the role of serotonin in breast cancer.  相似文献   

3.
Photodynamic therapy (PDT) for actinic field cancerization is effective but painful. Pain mechanisms remain unclear but fluence rate has been shown to be a critical factor. Lower fluence rates also utilize available oxygen more efficiently. We investigated PDT effect in normal SKH1-HR mice using low and high fluence rate aminolevulinic acid (ALA) PDT and a fractionated illumination scheme. Six groups of six mice with different light treatment parameters were studied. Visual skin damage was assessed up to 7 days post-PDT. Fluorescence and reflectance spectroscopy during illuminations provided us with real-time information about protoporphyrin IX (PpIX) photobleaching. A novel dosing approach was introduced in that we used a photobleaching percentage instead of a preset fluence. Data show similar total and maximum damage scores in high and low fluence rate groups. Photobleaching of PpIX in the low fluence rate groups shows a trend toward more efficient photobleaching. Results indicate that low fluence rate PDT is as effective as and more efficient than high fluence rate PDT in normal mouse skin. Low fluence rate PDT light protocols need to be explored in human studies in search for an effective and well-tolerated treatment for actinic field cancerization.  相似文献   

4.
Reactive oxygen species (ROS) are critical for many cellular functions, and dysregulation of ROS involves the development of multiple types of tumors, including pancreatic cancer. However, ROS have been grouped into a single biochemical entity for a long time, and the specific roles of certain types of ROS in tumor cells (e.g., pancreatic ductal adenocarcinoma (PDAC)) have not been systematically investigated. In this work, a highly sensitive and accurate mass spectrometry-based method was applied to study PDAC cells of humans and of genetically modified animals. The results show that the oncogenic KRAS mutation promotes the accumulation of hydrogen peroxide (H2O2) rather than superoxide or hydroxyl radicals in pancreatic cancer cells. We further identified that the enriched H2O2 modifies cellular metabolites and promotes the survival of pancreatic cancer cells. These findings highlight the specific roles of H2O2 in pancreatic cancer development, which may provide new directions for pancreatic cancer therapy.  相似文献   

5.
Neuroglobin (NGB) is a myoglobin-like monomeric globin that is involved in several processes, displaying a pivotal redox-dependent protective role in neuronal and extra-neuronal cells. NGB remarkably exerts its function upon upregulation by NGB inducers, such as 17β-estradiol (E2) and H2O2. However, the molecular bases of NGB’s functions remain undefined, mainly in non-neuronal cancer cells. Human MCF-7 breast cancer cells with a knocked-out (KO) NGB gene obtained using CRISPR/Cas9 technology were analyzed using shotgun label-free quantitative proteomics in comparison with control cells. The differential proteomics experiments were also performed after treatment with E2, H2O2, and E2 + H2O2. All the runs acquired using liquid chromatography–tandem mass spectrometry were elaborated within the same MaxQuant analysis, leading to the quantification of 1872 proteins in the global proteomic dataset. Then, a differentially regulated protein dataset was obtained for each specific treatment. After the proteomic study, multiple bioinformatics analyses were performed to highlight unbalanced pathways and processes. Here, we report the proteomic and bioinformatic investigations concerning the effects on cellular processes of NGB deficiency and cell treatments. Globally, the main processes that were affected were related to the response to stress, cytoskeleton dynamics, apoptosis, and mitochondria-driven pathways.  相似文献   

6.
研究了木香烃内酯诱导人乳腺癌细胞MCF-7细胞凋亡的作用机制.采用流式细胞仪测定不同浓度木香烃内酯(0,2,4,8 μg/mL)作用于MCF-7细胞后细胞凋亡、活性氧(Reactive oxygen species,ROS)含量及线粒体跨膜电位(Mitochondrial transmembrane potential,MTP)的变化,气相色谱-质谱联用(GC-TOF/MS)技术分析加药组与未加药组的代谢差异物.结果表明,木香烃内酯能诱导MCF-7细胞凋亡,并具有浓度依赖性,能够促使ROS含量升高;MTP在2μg/mL木香烃内酯作用时升高,在4和8μg/mL时显著下降;基于GC-TOF/MS的细胞代谢组学研究,最终发现15种代谢差异物.基于上述结果,推测木香烃内酯通过引起ROS含量升高、MTP降低,扰乱线粒体的正常功能,进一步阻碍TCA循环,抑制ATP合成,扰乱了细胞内代谢物的平衡,并引起位于膜间隙的凋亡相关蛋白释放,最终导致MCF-7细胞的凋亡.  相似文献   

7.
Background: Breast cancer is the most diagnosed cancer among women, and its incidence and mortality are rapidly growing worldwide. In this regard, plant-derived natural compounds have been shown to be effective as chemotherapeutic and preventative agents. Apricot kernels are a rich source of nutrients including proteins, lipids, fibers, and phenolic compounds and contain the aromatic cyanogenic glycoside amygdalin that has been shown to exert a cytotoxic effect on cancer cells by affecting the cell cycle, inducing apoptosis, and regulating the immune function. Methods: Here, we describe a previously unexplored proapoptotic mechanism of action of amygdalin in breast cancer (MCF7) cells that involves the modulation of intracellular proteolysis. For comparative purposes, the same investigations were also conducted upon cell treatment with two apricot kernel aqueous extracts from Prunus armeniaca L. Results: We observed that both the 20S and 26S proteasome activities were downregulated in the MCF7 cells upon 24 h treatments. Simultaneously, the autophagy cascade resulted in being impaired due to cathepsin B and L inhibition that also contributed to a reduction in cancer cell migration. The inhibition of these proteolytic systems finally promoted the activation of apoptotic events in the MCF7 cells. Conclusion: Collectively, our data unveil a novel mechanism of the anticancer activity of amygdalin, prompting further investigations for potential application in cancer preventative strategies.  相似文献   

8.
Salinomycin ( 1 ) exhibits a large spectrum of biological activities including the capacity to selectively eradicate cancer stem cells (CSC), making it and its derivatives promising candidates for the development of drug leads against CSC. It has been previously shown that salinomycin and its C20-propargylamine derivative (Ironomycin ( 2 )) accumulate in lysosomes and sequester iron in this organelle. Herein, a library of salinomycin derivatives is reported, including products of C20-amination, C1-esterification, C9-oxidation, and C28-dehydration. The biological activity of these compounds is evaluated against transformed human mammary epithelial HMLER CD24low/CD44high cells, a well-established model of breast CSC, and HMLER CD24high/CD44low cells deprived of CSC properties. Unlike other structural alterations, derivative 4 , which displays a cyclopropylamine at position C20, showed a strikingly low IC50 value of 23 nm against HMLER CD24low/CD44high cells. This study provides highly selective molecules to target the CSC niche, a potential interesting advance for drug development to prevent cancer resistance.  相似文献   

9.
Chimeric antigen receptor T (CAR‐T) cells have demonstrated promising results against hematological malignancies, but have encountered significant challenges in translation to solid tumors. To overcome these hurdles, we have developed a switchable CAR‐T cell platform in which the activity of the engineered cell is controlled by dosage of an antibody‐based switch. Herein, we apply this approach to Her2‐expressing breast cancers by engineering switch molecules through site‐specific incorporation of FITC or grafting of a peptide neo‐epitope (PNE) into the anti‐Her2 antibody trastuzumab (clone 4D5). We demonstrate that both switch formats can be readily optimized to redirect CAR‐T cells (specific for the corresponding FITC or PNE) to Her2‐expressing tumor cells, and afford dose‐titratable activation of CAR‐T cells ex vivo and complete clearance of the tumor in rodent xenograft models. This strategy may facilitate the application of immunotherapy to solid tumors by affording comparable efficacy with improved safety owing to switch‐based control of the CAR‐T response.  相似文献   

10.
Standardized treatment guidelines and effective drugs are not available for human triple-negative breast cancer (TNBC). Many efforts have recently been exerted to investigate the efficacy of natural compounds as anticancer agents owing to their low toxicity. However, no study has examined the effects of isobavachalcone (IBC) on the programmed cell death (PCD) of human triple-negative breast MDA-MB-231 cancer cells. In this study, IBC substantially inhibited the proliferation of MDA-MB-231 cells in concentration- and time-dependent manners. In addition, we found that IBC induced multiple cell death processes, such as apoptosis, necroptosis, and autophagy in MDA-MB-231 cells. The initial mechanism of IBC-mediated cell death in MDA-MB-231 cells involves the downregulation of Akt and p-Akt-473, an increase in the Bax/Bcl-2 ratio, and cleaved caspases-3 induced apoptosis; the upregulation of RIP3, p-RIP3 and MLKL induced necroptosis; as well as a simultaneous increase in LC3-II/I ratio induced autophagy. In addition, we observed that IBC induced mitochondrial dysfunction, thereby decreasing cellular ATP levels and increasing reactive oxygen species accumulation to induce PCD. These results suggest that IBC is a promising lead compound with anti-TNBC activity.  相似文献   

11.
Herein, we report ultrasound-propelled graphene-oxide coated gold nanowire motors, functionalized with fluorescein-labeled DNA aptamers (FAM-AIB1-apt), for qualitative detection of overexpressed AIB1 oncoproteins in MCF-7 breast cancer cells. The movement of nanomotors under the ultrasound field facilitated intracellular uptake and resulted in a faster aptamer binding with the target protein and thus faster fluorescence recovery. The propulsion behavior of the aptamer functionalized nanomotors greatly enhanced the fluorescence intensity compared to static conditions. The new aptamer@nanomotor-based strategy offers considerable potential for further development of sensing methodologies towards diagnosis of breast cancer.  相似文献   

12.
Rubus fairholmianus (RF) has widely been used to treat various ailments, including pain, diabetes, and cancer. Zinc oxide nanoparticles (ZnO NPs) have drawn attention in modern healthcare applications. Hence, we designed this study to synthesize zinc oxide (ZnO) nanoparticles using R. fairholmianus root extract to investigate its synergistic cytotoxic effect on MCF-7 cells and explore the possible cell death mechanism. ZnO NPs were synthesized via green synthesis using R. fairholmianus root extract, and the effect on MCF-7 cells was determined by looking at cellular morphology, proliferation, cytotoxicity, apoptosis, and reactive oxygen species (ROS). The results showed that cellular proliferation was reduced following treatment with R. fairholmianus capped zinc oxide nanoparticles (RFZnO NPs), while cytotoxicity and ROS were increased. There was also an increase in apoptosis as indicated by the significant increase in cytoplasmic cytochrome c and caspase 3/7 (markers of apoptosis), as well as increased levels of pro-apoptotic proteins (p53, Bax) and decreased levels of anti-apoptotic protein (Bcl-2). In conclusion, these results showed that RFZnO NPs induce apoptosis in breast cancer cells via a mitochondria-mediated caspase-dependent apoptotic pathway and suggest the use of acetone root extract of R. fairholmianus for the treatment of cancer-related ailments.  相似文献   

13.
The contributing molecular pathways underlying the pathogenesis of breast cancer need to be better characterized. The principle of our study was to better understand the genetic mechanism of oncogenesis for human breast cancer and to discover new possible tumor markers for use in clinical practice. We used complimentary DNA (cDNA) microarrays to compare gene expression profiles of treated Michigan Cancer Foundation-7 (MCF-7) with recombinant bromelain and untreated MCF-7. SpringGene analysis was carried out of differential expression followed by Ingenuity Pathway Analysis (IPA), to understand the underlying consequence in developing disease and disorders. We identified 1,102 known genes differentially expressed to a significant degree (p?相似文献   

14.
Carnosic acid (CA) is a natural phenolic compound with several biomedical actions. This work was performed to study the use of CA-loaded polymeric nanoparticles to improve the antitumor activity of breast cancer cells (MCF-7) and colon cancer cells (Caco-2). CA was encapsulated in bovine serum albumin (BSA), chitosan (CH), and cellulose (CL) nanoparticles. The CA-loaded BSA nanoparticles (CA-BSA-NPs) revealed the most promising formula as it showed good loading capacity and the best release rate profile as the drug reached 80% after 10 h. The physicochemical characterization of the CA-BSA-NPs and empty carrier (BSA-NPs) was performed by the particle size distribution analysis, transmission electron microscopy (TEM), and zeta potential. The antitumor activity of the CA-BSA-NPs was evaluated by measuring cell viability, apoptosis rate, and gene expression of GCLC, COX-2, and BCL-2 in MCF-7 and Caco-2. The cytotoxicity assay (MTT) showed elevated antitumor activity of CA-BSA-NPs against MCF-7 and Caco-2 compared to free CA and BSA-NPs. Moreover, apoptosis test data showed an arrest of the Caco-2 cells at G2/M (10.84%) and the MCF-7 cells at G2/M (4.73%) in the CA-BSA-NPs treatment. RT-PCR-based gene expression analysis showed an upregulation of the GCLC gene and downregulation of the BCL-2 and COX-2 genes in cells treated with CA-BSA-NPs compared to untreated cells. In conclusion, CA-BSA-NPs has been introduced as a promising formula for treating breast and colorectal cancer.  相似文献   

15.
Imbalance in the cellular redox system is thought to be associated with the induction and progression of breast cancers, and heme proteins may regulate the redox balance. Cytochrome b5 (Cyt b5) is a small mitochondrial heme protein. Its function and regulating mechanism in breast cancer remain unknown. In this study, we elucidated the level of endogenous oxidative stress in breast cancer cells, MCF-7 cells (hormone receptor-positive cells) and MDA-MB-231 cells (triple-negative cells), and investigated the difference in Cyt b5 content. Based on the low content of Cyt b5 in MDA-MB-231 cells, the overexpression of Cyt b5 was found to regulate the oxidative stress and apoptosis cascades, including ERK1/2 and Akt signaling pathways. The overexpressed Cyt b5 MDA-MB-231 cells were shown to exhibit decreased oxidative stress, less phosphorylation of ERK1/2 and Akt, and less cleavage of caspases 3 and 9 upon treatment with H2O2, as compared to those of normal MDA-MB-231 cells. Moreover, the overexpressed Cyt b5 most likely functioned by interacting with its protein partner, Cyt c, as suggested by co-immunoprecipitation studies. These results indicated that Cyt b5 has different effects on breast cancer cells of different phenotypes, which provides useful information for understanding the multiple roles of Cyt b5 and provides clues for clinical treatment.  相似文献   

16.

The development of multifunctional nanocomposite can greatly improve therapeutic effects to impair tumor proliferation. In the present study, we developed a new class of dual-drug delivering system, the Selenium Mesoporous Silica (SMS) nanocomposites to achieve molecular based tumor-targeting. A series of experiments have been performed to tether Mesoporous Silica nanoparticle (MSN) with chitosan-selenium complex using cysteine amino acid. The Chemical and biological assays authenticated that a perfect “chemistry works” between the formulated SMS nanocomposites and selected drugs, namely, Metformin (MT) and Cisplatinn (Cis). As a sequential reaction, the MT-MSN-CS-Se-Cis nanocomposites allowed the cRGD peptide to attach with MSN. Furthermore, the sulfur groups of MT-MSN-Cys make a conjugation with Se-Cis-CS material, on which cRGD peptide was grafted as a target moiety. This multifunctional SMS nanocomposite enhances specific cellular uptake of drugs, controlled release and higher inhibitory effects against MDA-MB-231 cells. Further studies demonstrated that the formulated nanocomposites significantly induce apoptosis through DNA damage and ROS overproduction that accounts for critical antitumor activity. Additionally, animal studies provide significantly enhanced the anti-tumor efficacy of formulated nanocomposites on tumor-bearing mice. Hence, the formulated nanocomposite is an effective multifunctional drug delivery podium which might have elicited the molecular targeted chemotherapeutic efficacy against cancer.

  相似文献   

17.
Primary liver cancer is the fifth leading death of cancers in men, and hepatocellular carcinoma (HCC) accounts for approximately 90% of all primary liver cancer cases. Sorafenib is a first-line drug for advanced-stage HCC patients. Sorafenib is a multi-target kinase inhibitor that blocks tumor cell proliferation and angiogenesis. Despite sorafenib treatment extending survival, some patients experience side effects, and sorafenib resistance does occur. 3-Hydroxymethyl glutaryl-CoA synthase 2 (HMGCS2) is the rate-limiting enzyme for ketogenesis, which synthesizes the ketone bodies, β-hydroxybutyrate (β-HB) and acetoacetate (AcAc). β-HB is the most abundant ketone body which is present in a 4:1 ratio compared to AcAc. Recently, ketone body treatment was found to have therapeutic effects against many cancers by causing metabolic alternations and cancer cell apoptosis. Our previous publication showed that HMGCS2 downregulation-mediated ketone body reduction promoted HCC clinicopathological progression through regulating c-Myc/cyclin D1 and caspase-dependent signaling. However, whether HMGCS2-regulated ketone body production alters the sensitivity of human HCC to sorafenib treatment remains unclear. In this study, we showed that HMGCS2 downregulation enhanced the proliferative ability and attenuated the cytotoxic effects of sorafenib by activating expressions of phosphorylated (p)-extracellular signal-regulated kinase (ERK), p-P38, and p-AKT. In contrast, HMGCS2 overexpression decreased cell proliferation and enhanced the cytotoxic effects of sorafenib in HCC cells by inhibiting ERK activation. Furthermore, we showed that knockdown HMGCS2 exhibited the potential migratory ability, as well as decreasing zonula occludens protein (ZO)-1 and increasing c-Myc expression in both sorafenib-treated Huh7 and HepG2 cells. Although HMGCS2 overexpression did not alter the migratory effect, expressions of ZO-1, c-Myc, and N-cadherin decreased in sorafenib-treated HMGCS2-overexpressing HCC cells. Finally, we investigated whether ketone treatment influences sorafenib sensitivity. We showed that β-HB pretreatment decreased cell proliferation and enhanced antiproliferative effect of sorafenib in both Huh7 and HepG2 cells. In conclusion, this study defined the impacts of HMGCS2 expression and ketone body treatment on influencing the sorafenib sensitivity of liver cancer cells.  相似文献   

18.
Triple Negative Breast Cancer (TNBC) is the aggressive and lethal type of breast malignancy that develops resistance to current therapies. Combination therapy has proven to be an effective strategy on TNBC. We aimed to study whether the nano-formulation of polyphenolic curcumin (Gemini-Cur) would affect the cisplatin-induced toxicity in MDA-MB-231 breast cancer cells. MDA-MB-231 cells were treated with Gemini-Cur, cisplatin and combination of Gemini-Cur/Cisplatin in a time- and dose-dependent manner. Cell viability was studied by using MTT, fluorescence microscopy and cell cycle assays. The mode of death was also determined by Hoechst staining and annexin V-FITC. Real-time PCR and western blotting were employed to detect the expression of BAX and BCL-2 genes. Our data demonstrated that Gemini-Cur significantly sensitizes cancer cells to cisplatin (combination index ≤ 1) and decreases IC50 values in comparison with Gemini-cur or cisplatin. Further studies confirmed that Gemini-Cur/Cisplatin suppresses cancer cell growth through induction of apoptosis (p < 0.001). In conclusion, the data confirm the synergistic effect of polyphenolic curcumin on cisplatin toxicity and provide attractive strategy to attain its apoptotic effect on TNBC.  相似文献   

19.
以5,10,15,20-四(4-吡啶基)卟啉为原料,分别采用分层法与溶剂热法制备了两种铜卟啉金属有机框架材料(MOF1和MOF2),其结构及形貌大小经UV-Vis, IR, XRD, TEM和SEM表征。采用1,3-二苯基异苯并呋喃(DPBF)考察材料在光照下生成单线态氧(1O2)的能力;在细胞水平上,采用MTT法评价了材料对小鼠乳腺癌细胞(4T1)的体外抑制活性;并采用活性氧探针(DCFH-DA)考察其在光照下产生活性氧的能力。结果表明:两种材料均具有过氧化氢催化能力,可有效改善4T1细胞的缺氧状态,且在光动力作用下MOF1对4T1细胞的毒性作用强于MOF2(P<0.001)。   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号