首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Review of Sunscreen Safety and Efficacy   总被引:9,自引:0,他引:9  
The use of sunscreen products has been advocated by many health care practitioners as a means to reduce skin damage produced by ultraviolet radiation (UVR) from sunlight. There is a need to better understand the efficacy and safety of sunscreen products given this ongoing campaign encouraging their use. The approach used to establish sunscreen efficacy, sun protection factor (SPF), is a useful assessment of primarily UVB (290–320 nm) filters. The SPF test, however, does not adequately assess the complete photoprotective profile of sunscreens specifically against long wavelength UVAI (340–400 nm). Moreover, to date, there is no singular, agreed upon method for evaluating UVA efficacy despite the immediate and seemingly urgent consumer need to develop sunscreen products that provide broad-spectrum UVB and UVA photoprotection. With regard to the safety of UVB and UVA filters, the current list of commonly used organic and inorganic sunscreens has favorable toxico-logical profiles based on acute, subchronic and chronic animal or human studies. Further, in most studies, sunscreens have been shown to prevent the damaging effects of UVR exposure. Thus, based on this review of currently available data, it is concluded that sunscreen ingredients or products do not pose a human health concern. Further, the regular use of appropriate broad-spectrum sunscreen products could have a significant and favorable impact on public health as part of an overall strategy to reduce UVR exposure.  相似文献   

2.
Ultraviolet light from the sun can produce long-term skin damage and cancer. The use of sunscreen products containing one or more UV filters is encouraged by health professionals for preventing the damaging effects resulting from sun exposure. However, recently there have been increasing concerns about the use of sunscreens and their safety for both humans and the environment. The sunscreen manufacturers should take the initiative in testing of the products for possible short-term skin toxicity and long-term health effects that might occur due to the absorption of UV filters through the skin. Published studies have shed light on this topic by investigating the harmful effects of UV filters such as oxybenzone on the hormone system of aquatic animals and humans. Currently, in vitro and in vivo animal models are being used to determine the mechanistic and cellular effects these products produce. With growing awareness of adverse effects posed by UV filters on the environment and exposed organisms, several jurisdictions are prohibiting their use in sunscreens. To our knowledge, very few reviews summarized the potential toxicities associated with UV filters. Therefore, the current reported findings are rather controversial due to the lack of nonclinical safety assessment data to determine the clinical significance of such exposure.  相似文献   

3.
Sunscreens are used to protect the human skin against harmful UV radiation. Today there is a trend toward higher sun protection factors (SPF) and better UVA protection. Methods for the assessment of SPF and UVA protection involve irradiation of the product, and the photostability properties of the sunscreen have an influence on its performance. Sunscreens often contain more than one UV filter. Thus it is important to understand the photostability properties of the complete system. The filter combinations used may exhibit destabilizing, stabilizing or inert interactions. For that reason, besides assessment of the properties of the single filters, photostabilities of binary filter combinations are investigated. Destabilization occurs when two UV absorbers undergo a chemical reaction after absorption of UV radiation. Stabilization may be achieved when the optical density of the system is very high, giving rise to a self‐protection effect of the sunscreen film. Photounstable UV absorbers may be additionally stabilized by employing triplet quenchers. Being aware of these mechanisms and applying them for specific UV filter combinations can help in designing efficient sunscreens.  相似文献   

4.
It is now well documented that chronic UVA exposure induces damage to human skin. Therefore, modern sunscreens should not only provide protection from both UVB and UVA radiation but also maintain this protection during the entire period of exposure to the sun. UVA filters, however, are rare and not sufficiently photostable. We investigated the effect of the introduction of a new UV filter, bis-ethylhexyloxyphenol methoxyphenyl triazine (Tinosorb S), in oil in water sunscreen formulations on the photostability of butyl methoxydibenzoylmethane (Avobenzone [AVB]) after irradiation with an optically filtered Xenon arc source (UV irradiance adjusted at 1 mean effective dose [MED]/min). With spectrophotometrical methods to assess the sun protection factor (SPF) and UVA ratio and chromatographical methods to determine the amount of UV filters recovered after irradiation we showed that Tinosorb S prevented the photodegradation of AVB in a concentration-dependent way, leading to a sustained SPF and UVA ratio even after irradiation with doses of up to 30 MED. Since AVB was shown to destabilize ethylhexyl methoxycinnamate (EHM) we tested the effect of Tinosorb S in sunscreens containing this UV filter combination. Here too Tinosorb S showed photoprotective properties toward both UV filters. Thus, Tinosorb S can be used successfully to improve the photostability and efficiency of sunscreens containing AVB and EHM.  相似文献   

5.
This study describes the development, validation and application of a high‐performance liquid chromatography (HPLC) method for the simultaneous determination of the in vitro skin penetration profile of four UV filters on porcine skin. Experiments were carried out on a gel‐cream formulation containing the following UV filters: diethylamino hydroxybenzoyl hexyl benzoate (DHHB), bis‐ ethylhexyloxyphenol methoxyphenyl triazine (BEMT), methylene bis‐ benzotriazolyl tetramethylbutylphenol (MBBT) and ethylhexyl triazone (EHT). The HPLC method demonstrated suitable selectivity, linearity (10.0–50.0 μg/mL), precision, accuracy and recovery from porcine skin and sunscreen formulation. The in vitro skin penetration profile was evaluated using Franz vertical diffusion cells for 24 h after application on porcine ear skin. None of the UV filters penetrated the porcine skin. Most of them stayed on the skin surface (>90%) and only BEMT, EHT and DHHB reached the dermis plus epidermis layer. These results are in agreement with previous results in the literature. Therefore, the analytical method was useful to evaluate the in vitro skin penetration of the UV filters and may help the development of safer and effective sunscreen products.  相似文献   

6.
Organic ultraviolet (UV) ray absorbents have been used as sunscreen materials, but may pose a safety problem when used at high concentration. In order to prevent direct contact of organic UV rays absorbent by the human skin, an organic UV absorbent such as 4,4′-diaminostilbene-2,2′-disulfonic acid (DASDSA) was intercalated into Zn2Al-layered double hydroxide (Zn2Al-LDHs) by coprecipiation reaction. The problem of deintercalation of organic molecules from LDHs by the anion exchange reaction with carbonate ion could be greatly depressed by forming a protection film of silica on the surface. Zn2Al-LDH/DASDSA was directly coated with silica by means of a polymerization technique based on the Stöber method. The deintercalation behavior as well as UV-shielding properties were investigated for coated particles.  相似文献   

7.
Organic UV filters are chemical compounds added to cosmetic sunscreen products in order to protect users from UV solar radiation. The need of broad-spectrum protection to avoid the deleterious effects of solar radiation has triggered a trend in the cosmetic market of including these compounds not only in those exclusively designed for sun protection but also in all types of cosmetic products.  相似文献   

8.

Rationale

Systemic absorption of UV-filtering chemicals following topical application of sunscreens may present a safety concern. The Food and Drug Administration (FDA) had recommended an in vitro skin permeation test (IVPT) to evaluate the potential of this safety risk for the evaluation of sunscreens prior to clinical studies. Therefore, a sensitive and robust bioanalytical method(s) were required for IVPT studies of different topical sunscreen products.

Methods

An analytical procedure to quantitate sunscreen UV-filtering components and excipients in IVPT samples including avobenzone, octocrylene, oxybenzone, ecamsule, methylparaben and propylparaben was developed employing a RapidFire 360 robotic sample delivery system coupled with a triple quadrupole mass spectrometer. The analytical procedure was developed and validated according to the requirements of the FDA Bioanalytical Method Validation Guidance for Industry (2018).

Results

The analytical method provided a turnaround time of 12 seconds per sample and was determined to be accurate, precise, specific, and linear over the corresponding analytical ranges. The validated method was successfully applied for two IVPT studies for evaluating the skin permeation potential of UV-filtering chemicals and assisting with the selection of the sunscreen products for the clinical study conducted by the FDA.

Conclusions

This work highlights the first analytical procedure that has applied a non-chromatographic-MS/MS automation platform to an in vitro biopharmaceutics study. The analytical platform simultaneously quantitated four UV filters and two excipients in complex media to evaluate their permeation in IVPT studies. The sample throughput and analytical performance of advanced automation platforms indicate their analytical procedure has the potential to significantly advance the efficiency of IVPT studies to evaluate permeation of a wide variety of UV chemical filters and excipients for topical OTC sunscreen products.
  相似文献   

9.
With the continued rise in skin cancers worldwide there is a need for effective skin protection against sunlight damage. It was shown previously that sunscreens, which claimed UVA protection (SPF 20+), provided limited protection against UV-induced ascorbate radicals in human skin. Here the results of an electron spin resonance (ESR) investigation to irradiate ex vivo human skin with solar-simulated light are reported. The ascorbate radical signal in the majority of skin samples was directly proportional to the irradiance over relevant sunlight intensities (0.9-2.9 mW cm(-2)). Radical production (substratum-corneum) by UV (wavelengths < 400 nm) and visible components (> 400 nm) was approximately 67% and 33% respectively. Ascorbate radicals were in steady state concentration at low irradiance (approximately 1 mW cm(-2) equivalent to UK sunlight), but at higher irradiance (approximately 3 mW cm(-2)) decreased with time, suggesting ascorbate depletion. Radical protection by a four star-rated sunscreen (with UVA protection) was optimal when applied as a thin film (40-60% at 2 mg cm(-2)) but less so when rubbed into the skin (37% at 4 mg cm(-2) and no significant protection at 2 mg cm(-2)), possibly due to cream filling crevices, which reduced film thickness. This study validates ESR determinations of the ascorbate radical for quantitative protection measurements. Visible light contribution to radical production, and loss of protection when sunscreen is rubbed into skin, has implications for sunscreen design and use for the prevention of free-radical damage.  相似文献   

10.
Proper application of sunscreen is essential as an effective public health strategy for skin cancer prevention. Insufficient application is common among sunbathers, results in decreased sun protection and may therefore lead to increased UV damage of the skin. However, no objective measure of sunscreen application thickness (SAT) is currently available for field-based use. We present a method to detect SAT on human skin for determining the amount of sunscreen applied and thus enabling comparisons to manufacturer recommendations. Using a skin swabbing method and subsequent spectrophotometric analysis, we were able to determine SAT on human skin. A swabbing method was used to derive SAT on skin (in mg sunscreen per cm2 of skin area) through the concentration–absorption relationship of sunscreen determined in laboratory experiments. Analysis differentiated SATs between 0.25 and 4 mg cm−2 and showed a small but significant decrease in concentration over time postapplication. A field study was performed, in which the heterogeneity of sunscreen application could be investigated. The proposed method is a low cost, noninvasive method for the determination of SAT on skin and it can be used as a valid tool in field- and population-based studies.  相似文献   

11.
A new sunscreen ingredient, methoxycinnamidopropyl polysilsesquioxane (MCP-PSQ), which contains an UV-absorbing p-methoxycinnamoyl group, has been developed synthetically and evaluated using in vitro and in vivo approaches. Previous studies revealed that MCP-PSQ has a raising or boosting effect on the sun protection factor (SPF) of other sunscreen agents. In this study, we demonstrated that MCP-PSQ, an organic/inorganic hybrid compound, has photoprotective effects for human fibroblasts, and for hairless mouse and human skin. MCP-PSQ increases cell viability and suppresses the expression of p53 protein in fibroblasts after UV exposure. In addition, the numbers of sunburn cells and mast cells are reduced by topical application of MCP-PSQ on hairless mouse skin after UV irradiation. A 10% MCP-PSQ cream has higher and similar effects on SPF values for human skin compared to 5% titanium dioxide (TiO(2)) and 5% ethylhexyl methoxycinnamate (EHMC), respectively. The SPF value obtained using the MCP-PSQ cream did not drop after UV irradiation of the cream itself. However, higher dose of UV irradiation is required to guarantee the stability or photostability of the formulation. Further, there were no side effects such as erythema, edema, itch or tingling, suggesting that MCP-PSQ is a good sunscreen agent.  相似文献   

12.
2-Hydroxy-4-methoxybenzophenone and 2-hydroxy-4-methoxybenzophenone-5-sulphonic acid, commonly known as benzophenone-3 (BZ3) and benzophenone-4 (BZ4), respectively, are substances widely used as UV filters in cosmetic products in order to absorb UV radiation and protect human skin from direct exposure to the deleterious wavelengths of sunlight. As with other UV filters, there is evidence of their percutaneous absorption.This work describes an analytical method developed to determine trace levels of free BZ3 and BZ4 in human urine. The methodology is based on a solid-phase extraction (SPE) procedure for clean-up and pre-concentration, followed by the monitoring of the UV filters by liquid chromatography-ultraviolet spectrophotometry detection (LC-UV). In order to improve not only the sensitivity and selectivity, but also the precision of the method, the principle of sequential injection analysis was used to automate the SPE process and to transfer the eluates from the SPE to the LC system. The application of a six-channel valve as an interface for the switching arrangements successfully allowed the on-line connection of SPE sample processing with LC analysis.The SPE process for BZ3 and BZ4 was performed using octadecyl (C18) and diethylaminopropyl (DEA) modified silica microcolumns, respectively, in which the analytes were retained and eluted selectively. Due to the matrix effects, the determination was based on standard addition quantification and was fully validated. The relative standard deviations of the results were 13% and 6% for BZ3 and BZ4, respectively, whereas the limits of detection were 60 and 30 ng mL−1, respectively. The method was satisfactorily applied to determine BZ3 and BZ4 in urine from volunteers that had applied a sunscreen cosmetic containing both UV filters.  相似文献   

13.
Nowadays there are many sun-protection cosmetics incorporating chemical and/or physical UV filters as active ingredients and there are no official methods to determine these kinds of compounds in sunscreen cosmetics. The objective of this work is to estimate TiO2 concentration, without sample preparation, employing a portable energy dispersive X-ray fluorescence (EDXRF), aiming to estimate the sun protection factor (SPF) due to the physical barrier in sunscreen composition, and also identify the metals present in the samples. A portable EDXRF system was used for the analysis of fifteen commercial samples. It was also prepared three formulations estimated in FPS-30 using TiO2 at 5%. Quantification was performed using calibration curves with standards from 1 to 30%. The physical barrier contribution in the SPF, associated to Ti concentration, was determined for all samples. The presence of some elements, like K, Zn, Br and Sr was detected in the sunscreen, identifying chemical elements that were not cited in the formulations. Three commercial samples were analyzed for total SPF determination and the result shows that the measured value is 10% lower than the nominal one.  相似文献   

14.
An analytical method based on ion-interaction chromatography with UV detection for simultaneous in-vitro estimation of the percutaneous absorption of the most used water-soluble UV filters in sunscreen cosmetics is proposed. These UV filters were phenylbenzimidazole sulfonic acid, disodium phenyl dibenzimidazole tetrasulfonate, benzophenone-4, and terephthalylidene dicamphor sulfonic acid. The methodology is based on applying the sunscreen containing the target UV filters to human epidermis in a diffusion cell. Analytes are determined in the receptor solution. To ensure skin integrity, screening of the cells was carried out by analytical determination of a marker. Analytical variables such as percentage ethanol, concentration of ion-pairing agent, pH of the mobile phase, and temperature were studied in order to achieve high resolution of the chromatographic peaks in the lowest possible time of analysis. The conditions selected consisted of a mobile phase composed of 35:65 (v/v) ethanol–ammonium acetate buffer solution (pH 4, containing 50 mmol L−1 tetra-n-butylammonium bromide). The chromatographic determination was carried out with the analytical column at 50 °C. UV detection was carried out at the maximum absorption wavelength for each analyte. The limit of detection (3s y/x /b) ranged from 16 to 65 ng mL−1, depending on the analyte.  相似文献   

15.
The photoaging process is characterized by skin changes due to ultraviolet radiation exposure and is the principal environmental factor affecting skin aging. Reflectance confocal microscopy permits noninvasive skin imaging to understand how the photoaging process may change skin. Since men do not habitually use sunscreen, the application of skin imaging techniques is important to understand the influence of sunlight on their skin health. The aim of this study was to develop a score based on RCM imaging analyses to evaluate the morphological and structural changes in the photoaged skin according to literature data. The score was applied in order to determine possible correlations between chronological aging and sunscreen use behavior among men. Thus, 40 men aged 18 to 50 years were recruited, images from the frontal region of their skin were obtained and the score was applied. It was observed that habits are more important than age for the skin photoaging process. Men with photoprotection habits showed overall better skin morphological and structural characteristics regardless of age, demonstrating that sun protection behavior is a major key factor in the understanding of photoaging, so that men should be encouraged to start the use of cosmetic products and perform self-care.  相似文献   

16.
Previously we reported that the broad-spectrum sunscreen microfine titanium dioxide (MTD) could completely protect C3H/HeJ mice from UV radiation-induced immunosuppression to a contact sensitizer. In contrast, 2-ethylhexyl p-methoxycinnamate (2-EHMC), a UVB-absorbing sunscreen, only partially protected the skin immune system. In this study we investigated further this differential protection of the skin immune system by comparing the ability of 2-EHMC and MTD to protect these mice from the promotion phase of tumorigenesis. The mice were initiated using a single subcarcinogenic dose of 7,12-dimethylbenz(a)anthracene (DMBA) followed by promotion with chronic low-dose solar-simulated UV radiation for 32 weeks. We used doses of UV insufficient to cause edema in order to simulate daily human exposure to solar UV radiation. Mice were observed for the appearance of squamous cell carcinomas for 48 weeks. The DMBA-initiation alone and DMBA-initiated, sunscreen-treated groups did not develop tumors. Ultraviolet alone induced the appearance of tumors in 46% of mice at week 48 and therefore some tumors were initiated by UV. Initiation with DMBA prior to UV irradiation enhanced tumorigenesis such that 87% of mice at week 48 had tumors. Both 2-EHMC and MTD completely protected these mice from UV-induced promotion as well as from complete carcinogenesis despite the different UV-absorption spectra of the sunscreens and their differential abilities to protect from UV-induced immunosuppression. Furthermore, we have shown that, if UV exposure is not increased to compensate for tolerance to edema, protection from tumorigenesis is afforded by sunscreens.  相似文献   

17.
Previous studies showed that the common UV filter substances benzophenone‐3 (BP–3), butyl methoxydibenzoylmethane (BM–DBM), octocrylene (OCR), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (EHS) and ethylhexyl triazone (EHT) were able to react with amino side chains of different proteins in vitro. To transfer the results to mammalian skin conditions, sunscreen products were applied on both prepared fresh porcine skin and glass plates, followed by UV irradiation and the determination of depletion of the respective UV filters. Significantly lower recoveries of the UV filters extracted from skin samples than from glass plates indicated the additional reaction of the UV filters with skin constituents, when proteins will be the most important reactants. Among the products tested, BP‐3 showed the greatest differences in recoveries between glass and skin samples of about 13% and 24% after 2 and 4 h of irradiation, respectively, followed by EHS > BM‐DBM > OCR > EHMC > EHT. The obtained results raise the question, whether the common in vitro evaluations of sunscreens, using inert substrate materials like roughened quartz or polymethyl methacrylate (PMMA) plates are really suitable to fully replace in vivo methods, as they cannot include skin‐typical reactions.  相似文献   

18.
Undesirable phototoxic and photoallergic reactions accompanying a justified increased use of sunscreen active ingredients within cosmetic products have encouraged the development of new products safer for human use. The sol-gel microencapsulation technology developed utilizes an interfacial polymerization process, allowing for the achievement of transparent silica glass microcapsules with sizes ranging between 0.3–3 microns and a characteristic core-shell structure. Within the sol-gel microcapsule structure a UV absorber core, constituting roughly 80% of the final product weight, is enclosed within a silica shell. These advanced sunscreen actives are then incorporated into a suitable cosmetic vehicle to achieve high Sun Protection Factors (SPF), while affording an improved safety profile, as the penetration of the UV absorbers is markedly reduced.  相似文献   

19.
Ultraviolet (UV) irradiation is a serious problem for skin health thus the interest in the research to develop sunscreen agent has been increasing. Chalcone is a promising compound to be developed as its chromophore absorbs in the UV region. Therefore, in the present work, we synthesized eight chalcone derivatives through Claisen–Schmidt condensation at room temperature. The evaluation of the optical properties of each chalcone derivatives in the UV region was conducted through spectroscopic and computational studies. The synthesized chalcones were obtained in good yields and they were active in the UV region. The results revealed that more methoxy substituents to chalcone leads toward red shift. All chalcone derivatives have high molar absorptivity value (21,000–56,000) demonstrating that they have the potential to be used as the sunscreen agent. The cytotoxicity assay showed that chalcone derivatives were demonstrating low toxicity toward normal human fibroblast cell, which is remarkable. Therefore, we concluded that the synthesized chalcones in this work were potential to be developed as novel sunscreen agents in real application.  相似文献   

20.
The phototoxic and photoallergic effects of the once popular UV sunscreen p-aminobanzoic acid are related, in part, to its ability to sensitize the formation of singlet oxygen as well as other reactive oxygen species. In this work we demonstrate that the sunscreen-photoinduced inactivation of a model protein, horseradish peroxidase, is reduced by approximately a factor of three when the sunscreen is encaspsulated in zeolite sodium Y. These results provide evidence that using the technology of zeolite encapsulation to prepare a supramolecular sunscreen that minimizes the skin contact of active ingredients may reduce the adverse effects of "naked" sunscreens on biological systems. These radiation-induced effects, unfortunately, frequently accompany the desirable UV-screening role of these products. These results provide an important benchmark for the use of zeolite encapsulation as a means of improving the safety of UV sunscreens for topical application.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号