首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
2.
These days, Ophthalmic wound treatment is a major problem; due to its nature, bio/materials are the best choices as wound dressing materials. The main objective of the current survey is to develop and investigate effective wound dressing materials for skin care applications. In these ways, we combined the good biological properties of Cobalt-doped hydroxyapatite particles (CoHAp) with the structural properties of Polycaprolactone (PCL)/ carboxymethyl cellulose (CMC) nanofibers. Electrospinning and co-precipitation methods were used to synthesize nanofibers and CoHAp particles, respectively. Nanocomposites were synthesized in the absence and different percentages of CoHAp. The PCL/CMC, PCL/CMC/CoHA 5 %, PCL/CMC/CoHA 10 %, and PCL/CMC/CoHA 15 % formulated nanocomposites have the diameter of 383 ± 50, 391 ± 84, 441 ± 65, and 495 ± 99 nm, respectively. The synthesized nanofibrous wound dressing porosity and water absorption capacity were in the range of 40 to 60 % and 32 to 63 %, respectively. Hemo and cytocompatibility of the nanofibrous wound dressing were analyzed by in vitro evaluation, and the results were satisfactory and the structures were fully biocompatible. The PCL/CMC/CoHA 10 % wound dressing, were selected as the best nanocomposites for wound healing based on our animal studies on the healing outcomes. The results showed that the PCL/CMC nanofibers-Cobalt-doped HAp wound dressing is an effective bioactive nano-biomaterials for the wound healing process.  相似文献   

3.
Influence of laser wavelength, laser irradiance and the buffer gas pressure were studied in high irradiance laser ablation and ionization source coupled with an orthogonal time-of-flight mass spectrometer. Collisional cooling effects of energetic plasma ions were proved to vary significantly with the elemental mass number. Effective dissociation of interferential polyatomic ions in the ion source, resulting from collision and from high laser irradiance, was verified. Investigation of relative sensitivity coefficients (RSC) of different elements performed on a steel standard GBW01396, which was ablated at 1064 nm, 532 nm, 355 nm, and 266 nm, has demonstrated that the thermal ablation mechanism could play a critical role with the first three wavelengths, while 266 nm induces non-thermal ablation principally. Experimental results also indicated that there is no evident discrepancy for most metal elements on RSCs and LODs among four wavelengths at high irradiance, except that high boiling point elements like Nb, Mo, and W have higher RSCs at higher irradiance regions of 1064 nm, 532 nm, and 355 nm due to thermal ablation. A geological standard and a garnet stone were also used in the experiment subsequently, and their RSCs and LODs for metal elements show nonsignificant dependence on wavelength at designated irradiances. All results reveal that relatively uniform sensitivity can be achieved at any wavelength for metal elements in the solids used in our experiments at an appropriate irradiance for the low pressure high irradiance laser ablation and ionization source.  相似文献   

4.
IntroductionFormulating new wound-healing ointments by natural compounds is the first research priority in the developing and developed countries. This study was intended to provide green formulation of Ag-NP ointment containing Citrus lemon leaf aqueous extract and examine its capability of healing cutaneous wounds and its antioxidant and cytotoxicity activities under in vitro and in vivo conditions.Materials and methodsDifferent techniques, including UV–Vis and FT-IR spectroscopy, were used to characterize Ag-NPs. MTT assay was used to investigate cytotoxicity property of Ag-NPs. Antioxidant activity of Ag-NPs were examined by DPPH in the presence of butylated hydroxytoluene as positive control. Parameters of cutaneous wound healing were measured both histopathologically and biochemically.ResultsClear peak at 429 nm shown by UV–Vis spectroscopy indicated formation of Ag-NPs. In FT-IR spectroscopy, presence of many antioxidant compounds provided an excellent condition to reduce silver in Ag-NPs. FE-SEM and TEM images showed spherical Ag-NPs with an average size of 25.1 nm. The synthesized silver nanoparticles had excellent cell viability on the HUVECs line and indicated this method was nontoxic. Application of Ag-NP ointment improved wound healing parameters significantly (P ≤ 0.01). Ag-NPs reduced wound areas, total cells, neutrophils and lymphocytes significantly (P ≤ 0.01) and increased wound contracture, vessels, hexosamines, hydroxyl proline, hexuronic acid, fibrocytes, fibroblasts and fibrocyte/ fibroblast ratios significantly (P ≤ 0.01).ConclusionsOnce our results are verified by clinically experimental studies, Ag-NP ointment can be used as a modern one to treat several types of wounds, especially cutaneous ones, in humans.  相似文献   

5.
Pongamia pinnata – a plant used since olden times in Ayurvedic treatment – is reported to have diverse functions including antibacterial, antidiabetic, antineurodegenerative, antiepileptic, antiulcer, etc. In this study, our objective was to prepare silver nanoparticles (AgNPs) by green synthesis mediated by methanolic seed extract of P. pinnata and to determine their antimicrobial and antioxidant potential and wound healing activity. AgNPs were characterized for particle size and shape and for antioxidant potential. Further, the AgNPs were incorporated in a gel. The wound healing activity was investigated using an excision wound healing model in Wistar rats. The AgNP‐loaded gel was applied topically to the wounded rats daily for 30 days. The wound contraction was calculated and histopathological studies of the healed tissues were conducted. Karanjin content of the extract was found to be 349 ± 2.16 mg g?1. Formation of AgNPs was confirmed using transmission and scanning electron microscopies and X‐ray diffraction. AgNPs showed good antioxidant potential and were active against Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa. Significant wound healing activity (p < 0.05) was shown by the AgNP gel as compared to 5% Betadine ointment. Thus, the prepared AgNPs have antimicrobial and wound healing effects that may be useful in treatment of topical infections especially in wounds.  相似文献   

6.
A microclimate with ventilation and proper wettability near the wound is vital for wound healing. In the case of pressure or absorption of large amounts of wound exudate, maintaining air circulation around the wound is currently a challenge for wound dressings. In this study, a novel self-pumping dressing (FAED) with multiple liquid transport channels is designed by combining a 3D spacer fabric, sodium alginate aerogel, and electrospun membrane. This unique structural design allows FAED to unidirectionally rapidly remove excess biofluid from the wound and transfer it through a special liquid transport channel to a liquid storage layer with a high absorption ratio. Importantly, the air circulation layer of FAED composed of liquid transport channels and spacer yarns provides excellent air permeability in both the horizontal (12.3 L min−1) and vertical (272.02 mm s−1) directions. Additionally, a lower compression modulus (0.14 MPa) and higher compression strength (0.15 MPa) enable the novel dressing to adapt to body contours and provide good supporting performance, as compared to foam dressings. Combined with its high biocompatibility, this unique dressing has significant potential for wound treatment and intensive care.  相似文献   

7.
The production of biodegradable dressing capable of sustained drug release, along with the monitoring of wound conditions, represents new heights of multifunctional platforms for wound care. The reported curcumin-loaded silk fibroin has shown sustained drug release over the time of 10 days through a non-Fickian diffusion process satisfying Korsmeyer-Peppas' model along with the visual monitoring of wound healing through notable color variation with pH as a biomarker. The superhydrophobic nature (water contact angle = 163.7) of the SF, along with the lipophilicity (CA = 0 (Blood)) and hygroscopic nature prevents wetting of wound surface, whereas the excess exudates from wounds are absorbed along with sufficient water and oxygen permeability. The pH responsiveness as a result of the keto-enol tautomerism in curcumin was utilized for wound monitoring through visual indication enabling even ordinary people to detect the state of the wound. The in-situ biodegradation studies verified using cow-dung slurry, the degradability of the material with 25.3% weight loss within 30 days following first-order kinetics (R2 = 0.994), as a result of the attack of proteolytic enzymes on the amino acid units of SF, mitigating the concerns of medical wastes.  相似文献   

8.
The present study was undertaken to evaluate a He-Ne laser (632.8 nm; 7 mW; 4.02 mW cm(-2); 15 mm spot size) dose and the treatment schedule on diabetic wound healing in a mouse model. Circular wounds of 15 mm diameter were created on streptozotocin induced diabetic Swiss albino mice, and were uniformly illuminated with the single exposure of various He-Ne laser doses of 1, 2, 3, 4 and 5 J cm(-2) respectively. Further, the treatment schedule was also optimized by exposing the wounds with 3 J cm(-2) at 0, 24 h, 48 h postwounding. Contraction kinetics, mean area under the curve and the mean healing time of the wounds were computed along with the collagen and the glucosamine levels in the wound ground tissues at various postwounding treatment schedules. Results of this study indicated that the single exposure of 3 J cm(-2) laser dose applied immediately after the wounding caused a significant reduction in the mean area under the curve and the mean healing time along with the elevated levels of collagen and glucosamine contents in the tissue compared to the controls. In conclusion, He-Ne laser dose of 3 J cm(-2) applied immediately after the wounding has demonstrated optimum wound healing compared to the other doses and treatment schedules.  相似文献   

9.
Effective management of full-thickness wounds faces significant challenges due to poor angiogenesis and impaired healing. Biomimetic tissue-engineered scaffolds with angiogenic properties can, however, enhance the regeneration capacity of the damaged skin. Here, we developed a hybrid double-layer nanofibrous scaffold, comprised of egg white (EW) and polyvinyl alcohol (PVA), loaded with niosomal Deferoxamine (NDFO) for enhanced angiogenesis and wound healing features. The hybrid scaffold showed enhanced mechanical properties with comparable modulus and shape-recovery behavior of the human skin. Thanks to the porous morphology and uniform distribution of NDFO within the nanofibers, in vitro drug release studies indicated controlled and sustained release of DFO for up to 9 days. The constructs also promoted a significant increase in vascular sprouting area in vitro and enhanced vascular branches ex vivo. In vivo, implantation of the hybrid scaffold in full-thickness wounds in rats revealed early angiogenic response, a higher number of neo-formed vessels, a faster healing rate and complete epithelialization as early as day 10, compared to the control groups. Thus, the presented biomimetic hybrid scaffold with DFO control release features holds great promise in accelerated full-thickness wound healing and soft tissue regeneration.  相似文献   

10.
The healing process in guinea pig skin following surgical incisions was evaluated at the molecular level, in vivo, by the use of Raman spectroscopy. After the incisions were closed either by suturing or by laser tissue welding (LTW), differences in the respective Raman spectra were identified. The study determined that the ratio of the Raman peaks of the amide III (1247 cm−1) band to a peak at 1326 cm−1 (the superposition of elastin and keratin bands) can be used to evaluate the progression of wound healing. Conformational changes in the amide I band (1633–1682 cm−1) and spectrum changes in the range of 1450–1520 cm−1 were observed in LTW and sutured skin. The stages of the healing process of the guinea pig skin following LTW and suturing were evaluated by Raman spectroscopy, using histopathology as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. A wavelet decomposition–reconstruction baseline correction algorithm was employed to remove the fluorescence wing from the Raman spectra.  相似文献   

11.

The anti-adhesion, anti-growth and the anti-penetration of bacteria, specifically multidrug-resistant bacteria, should be taken into consideration when designing promising wound dressings for infected wounds such as diabetic foot ulcers. Wound dressings composed of natural polymeric nanofibers such as functionalized cellulose, chitosan, alginate, hyaluronic acid, dextrin and cyclodextrin with appropriate antimicrobial and skin reconstruction properties are suitable alternatives that can accelerate wound healing and remove microbial infections. For instance, to improve the release profile of antibacterial agents such as metal nanoparticles and antibiotics, water-soluble polymers like polyethylene oxide and polyvinylpyrrolidone may be incorporated into polymeric nanofiber scaffolds. This review, therefore, addresses the current status and future challenges of antibacterial activities of nanofiber scaffolds composed of some of the natural occurring polymers.

  相似文献   

12.
This study analyzed photobiomodulation therapy (PBMT) effects on regenerative, antioxidative, anti-inflammatory and angiogenic markers in the dystrophic skeletal muscle of mdx mice, the experimental model of Duchenne muscular dystrophy (DMD), during the acute phase of dystrophy disease. The following groups were set up: Ctrl (control group of normal wild-type mice; C57BL/10); mdx (untreated mdx mice); mdxPred (mdx mice treated with prednisolone) and mdxLA (mdx mice treated with PBMT). The PBMT was carried out using an Aluminum Gallium Arsenide (AIGaAs; IBRAMED® laserpulse) diode, 830 nm wavelength, applied on the dystrophic quadriceps muscle. The mdxLA group showed a degenerative and regenerative area reduction simultaneously with a MyoD level increase, ROS production and inflammatory marker reduction and up-regulation in the VEGF factor. In addition, PBMT presented similar effects to prednisolone treatment in most of the parameters analyzed. In conclusion, our results indicate that PBMT in the parameters selected attenuated the dystrophic phenotype of mdx mice, improving skeletal muscle regeneration; reducing the oxidative stress and inflammatory process; and up-regulating the angiogenic marker.  相似文献   

13.
Gingival fibroblasts have critical roles in oral wound healing. Photobiomodulation (PBM) has been shown to promote mucosal healing and is now recommended for managing oncotherapy-associated oral mucositis. This study examined the effects of the emission mode of a 940 nm diode laser on the viability and migration of human gingival fibroblasts. Cells were cultured in a routine growth media and treated with PBM (average power 0.1 W cm−2, average fluence 3 J cm−2, every 12 h for six sessions) in one continuous wave and two pulsing settings with 20% and 50% duty cycles. Cell viability was assessed using MTT, and digital imaging quantified cell migration. After 48 and 72 h, all treatment groups had significantly higher viability (n = 6, P < 0.05) compared with the control. The highest viability was seen in the pulsed (20% duty cycle) group at the 72-h time point. PBM improved fibroblast migration in all PBM-treated groups, but differences were not statistically significant (n = 2, P > 0.05). PBM treatments can promote cell viability in both continuous and pulsed modes. Further studies are needed to elucidate the optimal setting for PBM-evoked responses for its rationalized use in promoting specific phases of oral wound healing.  相似文献   

14.
Individuals with diabetic foot ulcers have overlapped the inflammatory, proliferative and remodeling phase, making the tissue vulnerable to delayed healing responses. We aimed to establish the dose–response relationship of photobiomodulation therapy of different doses and matrix metalloproteinases in the healing dynamics of diabetic neuropathic ulcers. Diabetes was induced in 126 Albino Wistar rats, and neuropathy was induced to the hind paw by a sciatic nerve injury method. An excisional wound was created on the neuropathy-induced leg. Photobiomodulation therapy of dosages 4, 6, 8, 10, 12 and 15 J cm−2 and wavelength 655 nm and 808 nm was irradiated. Photobiomodulation therapy of dosages 4, 6 and 8 J cm−2 showed better wound healing properties with optimized levels of matrix metalloproteinases-1 and 8. We observed a strong dose response in the experimental group treated with 6 and 8 J cm−2. The findings from the present study conclude that photobiomodulation therapy of dosages 4, 6 and 8 J cm−2 is suggestive of usefulness in diabetic neuropathic ulcer healing. Markers like matrix metalloproteinases may give a clear direction on response to the therapy. Based on the findings from the present study, we recommend to validate the findings for safety and efficacy in future through human prospective randomized controlled clinical trials.  相似文献   

15.
Several diseases or conditions cause dermatological disorders that hinder the process of skin repair. The search for novel technologies has inspired the combination of stem cell (SC) and light-based therapies to ameliorate skin wound repair. Herein, we systematically revised the impact of photobiomodulation therapy (PBM) combined with SCs in animal models of skin wounds and quantitatively evaluated this effect through a meta-analysis. For inclusion, SCs should be irradiated in vitro or in vivo, before or after being implanted in animals, respectively. The search resulted in nine eligible articles, which were assessed for risk of bias. For the meta-analysis, studies were included only when PBM was applied in vivo, five regarding wound closure, and three to wound strength. Overall, a positive influence of SC + PBM on wound closure (mean difference: 9.69; 95% CI: 5.78–13.61, P < 0.00001) and strength (standardized mean difference: 1.7, 95% CI: 0.68–2.72, P = 0.001) was detected, although studies have shown moderate to high heterogeneity and a lack of information regarding some bias domains. Altogether, PBM seems to be an enabling technology able to be applied postimplantation of SCs for cutaneous regeneration. Our findings may guide future laboratory and clinical studies in hopes of offering wound care patients a better quality of life.  相似文献   

16.
In a biological process where the herbal tea (Stachys lavandulifolia) aqueous extract was applied as a capping and reducing agent, nanoparticles (NPs) of silver (Ag) were synthesized. These AgNPs were characterized using Fourier transform‐infrared spectroscopy, field emission‐scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. The synthesized AgNPs had great cell viability dose‐dependently [investigating the effect of the plant on human umbilical vein endothelial cell line] and indicated this method was non‐toxic. In this study, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was carried out to examine antioxidant properties, which revealed similar antioxidant properties for AgNPs and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial characteristics. The macro‐broth tube test was run to determine minimum inhibitory concentration. All data of antibacterial and cutaneous wound‐healing examinations were analyzed by SPSS 21 software (Duncan post hoc test). AgNPs showed higher antibacterial property than all standard antibiotics (p ≤ 0.01). Also, AgNPs prevented the growth of all bacteria at 2–8 mg/ml concentrations and destroyed them at 2–16 mg/ml concentrations (p ≤ 0.01). For the in vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control; treatment with Eucerin basal ointment; treatment with 3% tetracycline ointment; treatment with 0.2% AgNO3 ointment; treatment with 0.2% S. lavandulifolia ointment; and treatment with 0.2% AgNPs ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3‐cm section was prepared from all dermal thicknesses at day 10. Use of AgNPs ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, macrophage and lymphocyte, and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte and fibrocytes/fibroblast rate compared with other groups. Seemingly, AgNPs can be used as a medical supplement owing to their non‐cytotoxic, antioxidant, antibacterial and cutaneous wound‐healing properties.  相似文献   

17.
We hypothesized that priming of the skin with ultraviolet radiation (UVR) before being injured would enhance wound healing. Four groups, each comprising 20 immunocompetent hairless mice, were exposed to simulated solar irradiation in escalating UVR doses; 0 standard erythema dose (SED) = control, 1 SED, 3 SED and 5 SED. Twenty‐four hours after UV irradiation, inflammation was quantified by skin reflectance (erythema) and myeloperoxidase (MPO) tissue levels, and two 6 mm full‐thickness excisional wounds and one 3 cm incisional wound were inflicted. Epidermal hyperplasia was assessed by quantitative histology. Five days after wounding, wound coverage by neoepithelium and wound width of the excisional wounds was quantified in hematoxylin–eosin sections, and breaking strength was measured in strips from incisional wounds. Erythema (< 0.001), MPO levels (< 0.0005) and epidermal cell layers (< 0.001) increased dose‐dependently by UV exposure of dorsal skin. In the excisional wounds, epithelial coverage decreased (= 0.024) by increasing the UVR dose, whereas there was no significant difference (= 0.765) in wound MPO levels. Neither wound width (= 0.850) nor breaking strength (= 0.320) differed among the groups. Solar‐simulated UVR 24 h before wounding impaired epithelialization but was not detrimental for surgical incisional wound healing.  相似文献   

18.
As the most important interface between human body and external environment, skin acts as an essential barrier preventing various environmental damages, among which DNA‐damaging UV radiation from the sun remains the major environmental risk factor causing various skin diseases. It has been well documented that wavelengths in the ultraviolet B (UVB) radiation range (290–320 nm) of the solar spectrum can be absorbed by skin and lead to cutaneous injury and various other deleterious effects. During process such as wound healing, the orchestrated movement of cells in a particular direction is essential and highly regulated, integrating signals controlling adhesion, polarity and the cytoskeleton. Cell adhesion and migration are modulated through both of actin and microtubule cytoskeletons. However, little was known about how UVB affects skin wound healing and migration of epidermal keratinocytes. Here, we demonstrate that UVB can delay the wound healing progress in vivo with a murine model of full‐thickness skin wound. In addition, UVB significantly inhibited keratinocyte motility by altering focal adhesion turnover and cytoskeletal dynamics. Our results provide new insights into the etiology of UVB exposure‐induced skin damages.  相似文献   

19.
The new age drugs are nanoparticles of metals, which can combat conditions like wounds and fight human pathogens like bacteria. The aim of the experiment was preparation, characterization, and assessment of cytotoxicity, antioxidant, cutaneous wound healing, antibacterial, and antifungal potentials of gold nanoparticles using the aqueous extract of Falcaria vulgaris leaves (AuNPs@F. vulgaris) under in vitro and in vivo condition. These nanoparticles were characterized by FT‐IR, UV, XRD, FE‐SEM, TEM, and AFM. The synthesized AuNPs@F. vulgaris had great cell viability dose‐dependently (Investigating the effect of the nanoparticles on HUVEC cell line) and indicated these nanoparticles were nontoxic. DPPH free radical scavenging test was done to evaluate the antioxidant potentials, which showed similar antioxidant potentials for AuNPs@F. vulgaris and butylated hydroxytoluene. In part of cutaneous wound healing effect of F. vulgaris, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control, treatment with Eucerin basal ointment, treatment with 3% tetracycline ointment, treatment with 0.2% HAuCl4 × H2O ointment, treatment with 0.2% F. vulgaris ointment, and treatment with 0.2% AuNPs@F. vulgaris ointment. These groups were treated for 10 days. Use of AuNPs@F. vulgaris ointment in the treatment groups substantially decreased (p ≤ 0.01) the wound area, total cells, neutrophil, and lymphocyte and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexuronic acid, fibrocyte, and fibrocytes/fibroblast rate compared to other groups. In antimicrobial part, MIC, MBC, and MFC were specified by macro‐broth dilution assay. AuNPs@F. vulgaris revealed higher antibacterial and antifungal properties than many standard antibiotics (p ≤ 0.01). Also, AuNPs@F. vulgaris prevented the growth of all bacteria at 2‐8 mg/ml concentrations and removed them at 2‐16 mg/ml concentrations (p ≤ 0.01). In case of antifungal potentials of AuNPs@F. vulgaris, they inhibited the growth of all fungi at 2‐4 mg/ml concentrations and destroyed them at 2‐8 mg/ml concentrations (p ≤ 0.01). In conclusion, synthesized AuNPs@F. vulgaris revealed non‐cytotoxicity, antioxidant, cutaneous wound healing, antibacterial, and antifungal activities.  相似文献   

20.
We report the design and development of an optical fiber probe-based Helium–Neon (He–Ne) low-level laser therapy system for tissue regeneration. Full thickness excision wounds on Swiss albino mice of diameter 15 mm were exposed to various laser doses of 1, 2, 3, 4, 6, 8 and 10 J cm−2 of the system with appropriate controls, and 2 J cm−2 showing optimum healing was selected. The treatment schedule for applying the selected laser dose was also standardized by irradiating the wounds at different postwounding times (0, 24 and 48 h). The tissue regeneration potential was evaluated by monitoring the progression of wound contraction and mean wound healing time along with the hydroxyproline and glucosamine estimation on wound ground tissues. The wounds exposed to 2 J cm−2 immediately after wounding showed considerable contraction on days 5, 9, 12, 14, 16 and 19 of postirradiation compared with the controls and other treatment schedules, showing significant (P < 0.001) decrease in the healing time. A significant increase in hydroxyproline and glucosamine levels was observed for the 2 J cm−2 irradiation group compared with the controls and other treatment groups. In conclusion, the wounds treated with 2 J cm−2 immediately after the wounding show better healing compared with the controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号