共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The clinical application of photodynamic therapy (PDT) for gastrointestinal (GI) neoplastic lesions has been developed with appreciation for the great efforts and kind support of Dr. Tom Dougherty and his followers’ contributions. There are several published studies on clinical PDT in the field of GI oncology. Esophageal cancer was one of the first clinical indications for PDT that was approved as an endoscopic procedure in both the United States and Japan. PDT was initially used as a palliative local treatment for patients with obstructive esophageal cancer. PDT is also indicated for eradicative therapy for dysplastic Barret’s esophagus, which is the precursor state of esophageal adenocarcinoma, with the support of level one evidence. In Japan, PDT was approved as a curative treatment for superficial esophageal carcinoma lesions, which are difficult to treat with endoscopic resection. Further, PDT using second-generation photosensitizers is approved for early local failure after radiotherapy, for which treatment with other modalities is difficult. PDT has also been assessed in other GI cancers, including gastric cancer, biliary cancer and pancreatic cancer. In this review, we overview the history and state of PDT for GI cancer. 相似文献
3.
Joan E. Roberts 《Photochemistry and photobiology》2020,96(3):524-528
Photodynamic therapy [dye-light therapy] is an excellent technique for use in detection and treatment of cancerous tissues. While this therapy is effective, it is limited by the phototoxic reactions that can occur in the surrounding normal tissues. These damaging side effects are of particular importance when treating neurosensory organs, such as the human eye. We report here new treatment strategies to enhance photodynamic effectiveness while limiting side effects to normal tissues. 相似文献
4.
Gloria C. Lin Maria L. Tsoukas Margaret S. Lee Salvador González Chitralada Vibhagool R. Rox Anderson Nikiforos Kollias 《Photochemistry and photobiology》1998,68(4):575-583
In an ideal world, photodynamic therapy (PDT) of abnormal tissue would reliably spare the surrounding normal tissue. Normal tissue responses set the limits for light and drug dosimetry. The threshold fluence for necrosis (TFN) was measured in normal skin following intravenous infusion with a photosensitizer, benzoporphyrin derivative monoacid ring A (BPD-MA) Verteporfin as a function of drug dose (0.25-2.0 mg/kg), wavelength of irradiation (458 and 690 nm) and time interval (0–5h) between drug administration and irradiation. The BPD-MA levels were measured in plasma and skin tissue to elucidate the relationship between TFN, drug kinetics and biodistribution. The PDT response of normal skin was highly reproducible. The TFN for 458 and 690 nm wavelengths was nearly identical and the estimated quantum efficiency for skin response was equal at these two wavelengths. Skin phototoxicity, quantified in terms of 1/ TFN, closely correlated with the plasma pharmacokinetics rather than the tissue pharmacokinetics and was quadratically dependent on the plasma drug concentration regardless of the administered drug dose or time interval between drug and light exposure. This study strongly suggests that noninvasive measurements of the circulating drug level at the time of light treatment will be important for setting optimal light dosimetry for PDT with liposomal BPD-MA, a vascular photosensitizer. 相似文献
5.
An electrophysiological study of photodynamic action on the Paramecium membrane was carried out. In the presence of methylene blue (MB), light-spot stimulation of an anterior and a posterior part induced a depolarization and a hyperpolarization of the membrane, respectively. Under voltage-clamping, the anterior stimulation induced an inward current, while the posterior stimulation induced an outward current. The amplitudes of these currents were dependent on the membrane potential. When K+ channels were blocked with Cs+ and tetraethylammonium (TEA+ ), the posterior outward current was inhibited, while the anterior inward current was not inhibited. Intracellular application of the Ca2+ chelator, 1,2 -bis (2-aminophenoxy) ethane- N,N,N',N' -tetraacetic acid (BAPTA) also inhibited the posterior outward current, but the anterior inward current was unaffected. These results suggest that photodynamic action on the Paramecium membrane primarily opens the Ca2+ channels and the following influx of Ca2+ activates the Ca2+ -dependent K+ channels localized mainly on the posterior part of the membrane. 相似文献
6.
Leo K. B. Tam Lin He Prof. Dennis K. P. Ng Prof. Peter C. K. Cheung Prof. Pui-Chi Lo 《Chemistry (Weinheim an der Bergstrasse, Germany)》2022,28(57):e202201652
A multifunctional photodynamic molecular beacon (PMB) has been designed and synthesized which contains an epidermal growth factor receptor (EGFR)-targeting cyclic peptide and a trimeric phthalocyanine skeleton in which the three zinc(II) phthalocyanine units are each substituted with a glutathione (GSH)-responsive 2,4-dinitrobenzenesulfonate (DNBS) quencher and are linked via two cathepsin B-cleavable GFLG peptide chains. This tailor-made conjugate is fully quenched in the native form due to the photoinduced electron transfer effect of the DNBS moieties and the self-quenching of the phthalocyanine units. It can target the EGFR overexpressed in cancer cells, and after receptor-mediated endocytosis, it can be activated selectively by the co-existence of intracellular GSH and cathepsin B, both of which are also overproduced in cancer cells, in terms of fluorescence emission and singlet oxygen generation. The cell-selective behavior of this PMB has been demonstrated using a range of cancer cells with different expression levels of EGFR, while the stimuli-responsive properties have been studied both in vitro and in various aqueous media. The overall results show that this advanced PMB, which exhibits several levels of control of the tumor specificity, is a promising photosensitizer for precise antitumoral photodynamic therapy. 相似文献
7.
Aaron J. Sorrin Mustafa Kemal Ruhi Nathaniel A. Ferlic Vida Karimnia William J. Polacheck Jonathan P. Celli Huang-Chiao Huang Imran Rizvi 《Photochemistry and photobiology》2020,96(2):232-259
Targeting the tumor microenvironment (TME) provides opportunities to modulate tumor physiology, enhance the delivery of therapeutic agents, impact immune response and overcome resistance. Photodynamic therapy (PDT) is a photochemistry-based, nonthermal modality that produces reactive molecular species at the site of light activation and is in the clinic for nononcologic and oncologic applications. The unique mechanisms and exquisite spatiotemporal control inherent to PDT enable selective modulation or destruction of the TME and cancer cells. Mechanical stress plays an important role in tumor growth and survival, with increasing implications for therapy design and drug delivery, but remains understudied in the context of PDT and PDT-based combinations. This review describes pharmacoengineering and bioengineering approaches in PDT to target cellular and noncellular components of the TME, as well as molecular targets on tumor and tumor-associated cells. Particular emphasis is placed on the role of mechanical stress in the context of targeted PDT regimens, and combinations, for primary and metastatic tumors. 相似文献
8.
Singlet oxygen, created in photosensitization, peroxidizes unsaturated fatty acids of the membrane's lipids. This generates alcoholic or aldehyde groups at double bonds' breakage points. In a previous study, we examined the leakage of a K+‐induced cross‐membrane electric potential of liposomes that undergo photosensitization. The question remains to what extent peroxidized lipids can compromise the stability of the membrane. In this study, we studied the effect of the oxidatively modified lipids PGPC and ALDOPC in the membrane on its stability, by monitoring the membrane electric potential with the potentiometric dye DiSC2(5). As the content of the modified lipids increases the membrane becomes less stable, and even at just 2% of the modified lipids the membrane's integrity is affected, in respect to the leakage of ions through it. When the liposomes that contain the modified lipids undergo photosensitization by hematoporphyrin, the lipid bilayer becomes even more unstable and passage of ions is accelerated. We conclude that the existence of lipids with a shortened fatty acid that is terminated by a carboxylic acid or an aldehyde and more so when photosensitized damage occurs to unsaturated fatty acids in lecithin, add up to a critical alteration of the membrane, which becomes leaky to ions. 相似文献
9.
New Applications in Photodynamic Therapy Introduction 总被引:3,自引:0,他引:3
10.
11.
12.
Manman Liu Yang Zhu Tiantian Wu Dr. Junjie Cheng Prof. Yangzhong Liu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(33):7442-7450
Ferritin is an iron-storage protein nanocage that is assembled from 24 subunits. The hollow cavity of ferritin enables its encapsulation of various therapeutic agents; therefore, ferritin has been intensively investigated for drug delivery. The use of antibody-ferritin conjugates provides an effective approach for targeted drug delivery. However, the complicated preparation and limited protein stability hamper wide applications of this system. Herein, we designed a novel nanobody-ferritin platform (Nb-Ftn) for targeted drug delivery. The site-specific conjugation between nanobody and ferritin is achieved by transglutaminase-catalyzed protein ligation. This ligation strategy allows the Nb conjugation after drug loading in ferritin, which avoids deactivation of the nanobody under the harsh pH environment required for drug encapsulation. To verify the tumor targeting of this Nb-Ftn platform, a photodynamic reagent, manganese phthalocyanine (MnPc), was loaded into the ferritin cavity, and an anti-EGFR nanobody was conjugated to the surface of the ferritin. The ferritin nanocage can encapsulate about 82 MnPc molecules. This MnPc@Nb-Ftn conjugate can be efficiently internalized by EGFR positive A431 cancer cells, but not by EGFR negative MCF-7 cells. Upon 730 nm laser irradiation, MnPc@Nb-Ftn selectively killed EGFR positive A431 cells by generating reactive oxygen species (ROS), whereas no obvious damage was observed on MCF-7 cells. Given that ferritin can be used for encapsulation of various therapeutic agents, this work provides a strategy for facile construction of nanobody-ferritin for targeted drug delivery. 相似文献
13.
14.
作为光动力疗法中至关重要的决定性因素,光敏剂的研究受到越来越多的重视.而糖基的引入,可以大大提高光敏剂母体的膜透过性和特异吸收性.从糖基光敏剂的母体结构、糖基光敏剂分子的构效关系、糖基的作用机理以及糖基光敏剂的药物动力学和代谢产物这四个方面对近年来糖基光敏剂的研究现状进行了综述,对其发展趋势进行了展望. 相似文献
15.
Julie C. Reddan Cathy Young Anderson Hui Xu Sharon Hrabovsky Kristin Freye Roberta Fairchild Karen A. Tubesing Craig A. Elmets 《Photochemistry and photobiology》1999,70(1):72-77
The purpose of this study was to determine if silicon phthalocyanine 4 (Pc 4), a second-generation photosensitizer being evaluated for the photodynamic therapy (PDT) of solid tumors, was immunosuppressive. Mice treated with Pc 4 PDT 3 days before dinitrofluorobenzene sensitization showed significant suppression of their cell-mediated immune response when compared to mice that were not exposed to PDT. The response was dose dependent, required both Pc 4 and light and occurred at a skin site remote from that exposed to the laser. The immunosuppression could not be reversed by in vivo pre-treatment of mice with antibodies to tumor necrosis factor-alpha or interleukin-10. These results provide evidence that induction of cell-mediated immunity is suppressed after Pc 4 PDT. Strategies that prevent PDT-mediated immunosuppression may therefore enhance the efficacy of this therapeutic modality. 相似文献
16.
Rapid Initiation of Apoptosis by Photodynamic Therapy 总被引:6,自引:1,他引:6
Abstract— Photodynamic therapy (PDT) of neoplastic cell lines is sometimes associated with the rapid initiation of apoptosis, a mode of cell death that results in a distinct pattern of cellular and DNA fragmentation. The apoptotic response appears to be a function of both the sensitizer and the cell line. In this study, we examined photodynamic effects of several photosensitizers on murine leukemia P388 cells. Two drugs, a porphycene dimer (PcD) and tin etiopurpurin (SnET2), which localized at lysosomal sites, were tested at PDT doses that resulted in 50% loss of viability (LD50 ), measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. An oligonucleosomal pattern of DNA degradation was observed within 1 h after irradiation. Neither sensitizer antagonized PDT-mediated internucleosomal DNA cleavage by the other. Very high PDT doses with either agent abolished this rapid internucleosomal cleavage. Exposure of cells to high concentrations of either sensitizer in the dark also resulted in rapid DNA fragmentation to nucle-osomes and nucleosome multimers; this effect was not altered by the antioxidant 6-hydroxy-2,5,7,8-tetramethyl-chroman-2-carboxylic acid (trolox), although the latter could protect cells from cytotoxicity and apoptotic effects caused by LD50 PDT doses. Photodamage from two cat-ionic sensitizers, which localized at membrane sites, caused rapid DNA cleavage to 50 kb particles; however, no further fragmentation was detected after 1 h under LD10 , LD50 or LD95 PDT conditions. Moreover, the presence of either cationic sensitizer inhibited the rapid internucleosomal cleavage induced by SnET2 or PcD photodamage. The site of photodynamic action may therefore be a major determinant of the initiation and rate of progression of apoptosis. 相似文献
17.
18.
Dr. Bingbing Sun Rui Chang Shoupeng Cao Dr. Chengqian Yuan Dr. Luyang Zhao Haowen Yang Prof. Junbai Li Prof. Xuehai Yan Prof. Jan C. M. van Hest 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(46):20763-20769
Inspired by the dynamic morphology control of molecular assemblies in biological systems, we have developed pH-responsive transformable peptide-based nanoparticles for photodynamic therapy (PDT) with prolonged tumor retention times. The self-assembled peptide–porphyrin nanoparticles transformed into nanofibers when exposed to the acidic tumor microenvironment, which was mainly driven by enhanced intermolecular hydrogen bond formation between the protonated molecules. The nanoparticle transformation into fibrils improved their singlet oxygen generation ability and enabled high accumulation and long-term retention at tumor sites. Strong fluorescent signals of these nanomaterials were detected in tumor tissue up to 7 days after administration. Moreover, the peptide assemblies exhibited excellent anti-tumor efficacy via PDT in vivo. This in situ fibrillar transformation strategy could be utilized to design effective stimuli-responsive biomaterials for long-term imaging and therapy. 相似文献
19.
Delayed Oxidative Photodamage induced by Photodynamic Therapy 总被引:1,自引:1,他引:0
Abstract— Apoptotic DNA fragmentation was observed 60 min after photodynamic therapy of murine leukemia cells in culture, using either of two photosensitizers with predominantly lysosomal targets. When the radical scavengers trolox or α-tocopherol succinate were present during irradiation, the subsequent appearance of apoptotic cells was prevented, as was phototoxicity. Addition of either scavenger during the 60 min after irradiation provided only partial protection from apoptosis and phototoxicity; this protection was abolished if the addition was delayed for 10 min. These results are consistent with a model whereby long-persisting photoproducts continue the initiation of apoptosis for approximately 10 min after irradiation has ceased. 相似文献
20.
Min Pan Qunying Jiang Junlin Sun Zhen Xu Yizhuo Zhou Li Zhang Xiaoqing Liu 《Angewandte Chemie (International ed. in English)》2020,59(5):1897-1905
Photodynamic therapy (PDT) has extraordinary promise for the treatment of many cancers. However, its clinical progress is impaired by the intrinsic hypoxic tumor microenvironment that limits PDT efficacy and the safety concern associated with biological specificity of photosensitizers or vehicles. Now it is demonstrated that rationally designed DNA nanosponges can load and delivery photosensitizer effectively, target tumor precisely, and relieve hypoxia‐associated resistance remarkably to enhance the efficacy of PDT. Specifically, the approach exhibits a facile assembly process, provides programmable and versatile nanocarriers, and enables robust in vitro and in vivo anti‐cancer efficacy with excellent biosafety. These findings represent a practical and safe approach by designer DNA nanoassemblies to combat cancer effectively and suggest a powerful strategy for broad biomedical application of PDT. 相似文献