首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The existence of stationary wave packets in the nonlinear Kerr media with an imaginary harmonic potential and a linear gain is investigated. By employing a variational approach the existence of stable bright solitons is shown for the case of a defocusing nonlinearity. In focusing nonlinear media, the bright solitons have been shown to be unstable. The predictions of variational approach are confirmed by numerical simulations of the full modified NLS equation. The predicted stationary localized wave packets can be observed in a quasi-one-dimensional BEC with an imaginary optical potential and atoms feeding.  相似文献   

2.
We demonstrate experimentally the existence of two transverse-dimensional counterpropagating (CP) incoherent spatial solitons in a 5 x 5 x 23 mm SBN:60Ce photorefractive crystal and investigate their dynamical behavior. We carry out numerical simulations that confirm our experimental findings. Substantially different behavior from the copropagating incoherent solitons is found. A symmetry breaking transition from stable overlapping CP solitons to unstable transversely displaced CP solitons is observed. We perform linear stability analysis that predicts the threshold for the split-up transition, in qualitative agreement with numerical simulations and experimental results.  相似文献   

3.
We show the existence of new stationary solutions in the form of domain wall soliton in the nonlinear Schrödinger-Poisson equations describing the dynamics of quantum electron plasmas. It is found that the domain wall soliton exists at strong coupling constant regime and shows a different dynamical behavior in comparison with the previously found dark and gray solitons. The robustness and the conservation of the energy of the domain wall solitons is demonstrated by numerical simulations.  相似文献   

4.
杨晓雨  郑江波  董亮伟 《中国物理 B》2011,20(3):34208-034208
We address the existence,stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium.Several families of soliton solutions,including flat-topped,dipole-like,and multipole-like solitons,can be supported by the defected lattices with different heights of defects.The width of existence domain of solitons is determined solely by the saturable parameter.The existence domains of various types of solitons can be shifted by the variations of defect size,lattice depth and soliton order.Solitons in the model are stable in a wide parameter window,provided that the propagation constant exceeds a critical value,which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium.We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.  相似文献   

5.
We demonstrated that linearly and nonlinearly amplitude-modulated (chirped) harmonic lattices can support odd and even solitons in both focusing and defocusing saturable media. The modulated lattice modifies the profiles and enlarges the stability domains of solitons, comparing with the unchirped one. Twisted solitons, or “soliton trains” whose profiles exhibit multi-peak structures can also be supported by linearly and nonlinearly chirped lattices. In sharp contrast with periodic lattices, chirped lattices remarkably broaden the existence and stability domains of twisted solitons, especially for solitons with more components. While even solitons in focusing media and twisted solitons in defocusing media are unstable, odd and twisted solitons in focusing media are stable in relatively wide parameter windows. Chirped lattice can be used as a linear guidance to realize the oscillation of solitons which is impossible in unchirped lattice.  相似文献   

6.
We analyze the existence and stability of two kinds of self-trapped spatially localized gap modes,gap solitons and truncated nonlinear Bloch waves,in one-and two-dimensional optical or matter-wave media with self-focusing nonlinearity,supported by a combination of linear and nonlinear periodic lattice potentials.The former is found to be stable once placed inside a single well of the nonlinear lattice,it is unstable otherwise.Contrary to the case with constant self-focusing nonlinearity,where the latter solution is always unstable,here,we demonstrate that it nevertheless can be stabilized by the nonlinear lattice since the model under consideration combines the unique properties of both the linear and nonlinear lattices.The practical possibilities for experimental realization of the predicted solutions are also discussed.  相似文献   

7.
The existence, stability and other dynamical properties of a new type of multi-dimensional (2D or 3D) solitons supported by a transverse low-dimensional (1D or 2D, respectively) periodic potential in the nonlinear Schr?dinger equation with the self-defocusing cubic nonlinearity are studied. The equation describes propagation of light in a medium with normal group-velocity dispersion (GVD). Strictly speaking, solitons cannot exist in the model, as its spectrum does not support a true bandgap. Nevertheless, the variational approximation (VA) and numerical computations reveal stable solutions that seem as completely localized ones, an explanation to which is given. The solutions are of the gap-soliton type in the transverse direction(s), in which the periodic potential acts in combination with the diffraction and self-defocusing nonlinearity. Simultaneously, in the longitudinal (temporal) direction these are ordinary solitons, supported by the balance of the normal GVD and defocusing nonlinearity. Stability of the solitons is predicted by the VA, and corroborated by direct simulations.  相似文献   

8.
We study the existence and stability of stationary and moving solitary waves in a periodically modulated system governed by an extended cmKdV (complex modified Korteweg-de Vries) equation. The proposed equation describes, in particular, the co-propagation of two electromagnetic waves with different amplitudes and orthogonal linear polarizations in a liquid crystal waveguide, the stronger (nonlinear) wave actually carrying the soliton, while the other (a nearly linear one) creates an effective periodic potential. A variational analysis predicts solitons pinned at minima and maxima of the periodic potential, and the Vakhitov-Kolokolov criterion predicts that some of them may be stable. Numerical simulations confirm the existence of stable stationary solitary waves trapped at the minima of the potential, and show that persistently moving solitons exist too. The dynamics of pairs of interacting solitons is also studied. In the absence of the potential, the interaction is drastically different from the behavior known in the NLS (nonlinear Schrödinger) equation, as the force of the interaction between the cmKdV solitons is proportional to the sine, rather than cosine, of the phase difference between the solitons. In the presence of the potential, two solitons placed in one potential well form a persistently oscillating bound state.  相似文献   

9.
Coupled modified nonlinear Schr?dinger (CMNLS) equations describe the pulse propagation in the picosecond or femtosecond regime of the birefringent optical fibers. A new type of the Lax pair and another hierarchy of the infinitely many conservation laws are derived based on the Wadati-Konno-Ichikawa system. By means of the Hirota method, soliton solutions in the normal dispersion regime are obtained. Parametric regions for the existence of dark and anti-dark vector soliton solutions are given. Asymptotic analysis shows that the collision between two solitons (two anti-dark solitons, two dark solitons, or dark and anti-dark solitons) in each polarization direction is elastic. Moreover, there is no energy transfer between two polarization components of each vector soliton, whether dark or anti-dark vector soliton. In addition, dark and anti-dark solitons can coexist on the same background seen from the collision between the dark and anti-dark solitons in one polarization direction. Our graphical analysis shows that the parameters in the CMNLS equations not only determine the regions for the existence of dark and anti-dark soliton solutions but also control the phase and direction of the propagation of the solitons. Finally, through the linear stability analysis, the modulational instability condition is given.  相似文献   

10.
We report results of the study of solitons in a system of two nonlinear-Schrödinger (NLS) equations coupled by the XPM interaction, which models the co-propagation of two waves in metamaterials (MMs). The same model applies to photonic crystals (PCs), as well as to ordinary optical fibers, close to the zero-dispersion point. A peculiarity of the system is a small positive or negative value of the relative group-velocity dispersion (GVD) coefficient in one equation, assuming that the dispersion is anomalous in the other. In contrast to earlier studied systems of nonlinearly coupled NLS equations with equal GVD coefficients, which generate only simple single-peak solitons, the present model gives rise to families of solitons with complex shapes, which feature extended oscillatory tails and/or a double-peak structure at the center. Regions of existence are identified for single- and double-peak bimodal solitons, demonstrating a broad bistability in the system. Behind the existence border, they degenerate into single-component solutions. Direct simulations demonstrate stability of the solitons in the entire existence regions. Effects of the group-velocity mismatch (GVM) and optical loss are considered too. It is demonstrated that the solitons can be stabilized against the GVM by means of the respective “management” scheme. Under the action of the loss, complex shapes of the solitons degenerate into simple ones, but periodic compensation of the loss supports the complexity.  相似文献   

11.
王强  文林  李再东 《中国物理 B》2012,21(8):80501-080501
We consider two coupled Gross-Pitaevskii equations describing a two-component Bose-Einstein condensate with time-dependent atomic interactions loaded in an external harmonic potential,and investigate the dynamics of vector solitons.By using a direct method,we construct a novel family of vector soliton solutions,which are the linear combination between dark and bright solitons in each component.Our results show that due to the superposition between dark and bright solitons,such vector solitons possess many novel and interesting properties.The dynamics of vector solitons can be controlled by the Feshbach resonance technique,and the vector solitons can keep the dynamic stability against the variation of the scattering length.  相似文献   

12.
Bright and dark matter wave solitons are constructed analytically in a three-dimensional (3D) highly anisotropic Bose-Einstein condensate (BEC) with a time-dependent parabolic potential, and numerical simulations are performed to confirm the existence and dynamics of such analytical solutions. Different classes of bright and dark solitons are discovered among the solutions of the generalized anisotropic (3+1)D Gross-Pitaevskii equation. Our results demonstrate that the bright and dark solitary waves can be manipulated and controlled by changing the scattering length, which can be used to compress the second-order bright and dark solitons of BECs into desired peak density.  相似文献   

13.
The dynamics of dark solitons in one-dimensional Bose-Einstein condensates under the nonlinearity and harmonic potential managements is investigated. It is found that at the large particle limit the macroscopic wave function could evolve self-similarly, which provides a time-varying background for the propagation of dark solitons. The approximate dark soliton solution is derived and its center-of-mass motion is predicted analytically.  相似文献   

14.
This paper recovers optical solitons for the newly proposed Kudryashov’s equation which governs soliton pulse propagation through optical fibers and photonic crystal fibers. A spectrum of soliton solutions are obtained from a wide range of integration norms. The existence criteria for such solitons are enlisted. Finally, couple of numerical simulations make the paper rounded.  相似文献   

15.
We present exact analytical results for bright and dark solitons in a type of one-dimensional spatially inhomogeneous nonlinearity. We show that the competition between a homogeneous self-defocusing (SDF) nonlinearity and a localized self-focusing (SF) nonlinearity supports stable fundamental bright solitons. For a specific choice of the nonlinear parameters, exact analytical solutions for fundamental bright solitons have been obtained. By applying both variational approximation and Vakhitov-Kolokolov stability criterion, it is found that exact fundamental bright solitons are stable. Our analytical results are also confirmed numerically. Additionally, we show that a homogeneous SF nonlinearity modulated by a localized SF nonlinearity allows the existence of exact dark solitons, for certain special cases of nonlinear parameters. By making use of linear stability analysis and direct numerical simulation, it is found that these exact dark solitons are linearly unstable.  相似文献   

16.
We present an overview of our recent theoretical studies on the quantum phenomena of the spin-1 Bose-Einstein condensates, including the phase diagram, soliton solutions and the formation of the topological spin textures. A brief exploration of the effects of spin-orbit coupling on the ground-state properties is given. We put forward proposals by using the transmission spectra of an optical cavity to probe the quantum ground states: the ferromagnetic and polar phases. Quasi-one-dimension solitons and ring dark solitons are studied. It is predicted that characteristics of the magnetic solitons in optical lattice can be tuned by controlling the long-range light-induced and static magnetic dipoledipole interactions; solutions of single-component magnetic and single-, two-, three-components polar solitons are found; ring dark solitons in spin-1 condensates are predicted to live longer lifetimes than that in their scalar counterparts. In the formation of spin textures, we have considered the theoretical model of a rapidly quenched and fast rotating trapped spin-1 Bose-Einstein condensate, whose dynamics can be studied by solving the stochastic projected Gross-Pitaevskii equations. Spontaneous generation of nontrivial topological defects, such as the hexagonal lattice skyrmions and square lattice of half-quantized vortices was predicted. In particular, crystallization of merons (half skyrmions) can be generated in the presence of spin-orbit coupling.  相似文献   

17.
Novel soliton solutions for the nonautonomous nonlinear Schr?dinger equation models with linear and harmonic oscillator potentials substantially extend the concept of classical solitons and generalize it to the plethora of nonautonomous solitons that interact elastically and generally move with varying amplitudes, speeds, and spectra adapted both to the external potentials and to the dispersion and nonlinearity variations. The nonautonomous soliton concept can be applied to different physical systems, from hydrodynamics and plasma physics to nonlinear optics and matter waves, and offer many opportunities for further scientific studies.  相似文献   

18.
We investigate exact nonlinear matter wave functions with odd and even parities in the framework of quasi-two-dimensional Bose–Einstein condensates (BECs) with spatially modulated cubic–quintic nonlinearities and harmonic potential. The existence condition for these exact solutions requires that the minimum energy eigenvalue of the corresponding linear Schrödinger equation with harmonic potential is the cutoff value of the chemical potential λ. The competition between two-body and three-body interactions influences the energy of the localized state. For attractive two-body and three-body interactions, the larger the matter wave order number n, the larger the energy of the corresponding localized state. A linear stability analysis and direct simulations with initial white noise demonstrate that, for the same state (fixed n), increasing the number of atoms can add stability. A quasi-stable ground-state matter wave is also found for repulsive two-body and three-body interactions. We also discuss the experimental realization of these results in future experiments. These results are of particular significance to matter wave management in higher-dimensional BECs.  相似文献   

19.
A brief overview of recent theoretical results in the area of three-dimensional dissipative optical solitons is given. A systematic analysis demonstrates the existence and stability of both fundamental (spinless) and spinning three-dimensional dissipative solitons in both normal and anomalous group-velocity regimes. Direct numerical simulations of the evolution of stationary solitons of the three-dimensional cubic-quintic Ginzburg-Landau equation show full agreement with the predictions based on computation of the instability eigenvalues from the linearized equations for small perturbations. It is shown that the diffusivity in the transverse plane is necessary for the stability of vortex solitons against azimuthal perturbations, while fundamental (zero-vorticity) solitons may be stable in the absence of diffusivity. It has also been found that, at values of the nonlinear gain above the upper border of the soliton existence domain, the three-dimensional dissipative solitons either develop intrinsic pulsations or start to expand in the temporal (longitudinal) direction keeping their structure in the transverse spatial plane. Presented at 9-th International Workshop on Nonlinear Optics Applications, NOA 2007, May 17–20, 2007, Świnoujście, Poland  相似文献   

20.
For solitary waves on a monoatomic chain with nearest neighbor interactions the continuum approximation has a limited validity range and exhibits certein mathematical problems. For pulse solitons these problems are overcome by the Quasicontinuum Approach (QCA), and the validity range is considerably extended. We generalize the QCA to oscillatory excitations and derive analytic expressions for bright and dark envelope solitons, limiting ourselves to a polynomial interaction potential with harmonic, cubic and quartic terms. Moreover we describe and apply a numerical iteration procedure in Fourier space in order to take into account discreteness effects in a systematic way. This procedure yields envelope solitons with a width in the order of the lattice constant. In the case of zero velocity these solutions can be compared with intrinsic localized modes derived by other authors. The stability and accuracy of all our solutions are tested by numerical simulations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号