首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the statistics of the optimal path in both random and scale-free networks, where weights are taken from a general distribution P(w). We find that different types of disorder lead to the same universal behavior. Specifically, we find that a single parameter (S defined as AL(-1/v) for d-dimensional lattices, and S defined as AN(-1/3) for random networks) determines the distributions of the optimal path length, including both strong and weak disorder regimes. Here v is the percolation connectivity exponent, and A depends on the percolation threshold and P(w). We show that for a uniform P(w), Poisson or Gaussian, the crossover from weak to strong does not occur, and only weak disorder exists.  相似文献   

2.
Magnetic zigzag edges of graphene are considered as a basis for novel spintronics devices despite the fact that no true long-range magnetic order is possible in one dimension. We study the transverse and longitudinal fluctuations of magnetic moments at zigzag edges of graphene from first principles. We find a high value for the spin wave stiffness D=2100 meV A2 and a spin-collinear domain wall creation energy E(dw)=114 meV accompanied by low magnetic anisotropy. Above the crossover temperature T(x) approximately 10 K, the spin correlation length xi proportional, variantT(-1) limits the long-range magnetic order to approximately 1 nm at 300 K while below T(x), it grows exponentially with decreasing temperature. We discuss possible ways of increasing the range of magnetic order and effects of edge roughness on it.  相似文献   

3.
We derive exact statistical properties of a recursive fragmentation process. We show that introducing a fragmentation probability 0相似文献   

4.
We employ a novel algorithm using a quasiexact embedded-cluster matching technique as minimization method within a genetic algorithm to reliably obtain numerically exact ground states of the Edwards-Anderson XY spin-glass model with bimodal coupling distribution for square lattices of up to 28 x 28 spins. Contrary to previous conjectures, the ground state of each disorder replica is nondegenerate up to a global O(2) rotation. The scaling of spin and chiral defect energies induced by applying several different sets of boundary conditions exhibits strong crossover effects. This suggests that previous calculations have yielded results far from the asymptotic regime. The novel algorithm and the aspect-ratio scaling technique consistently give theta(s)=-0.308(30) and theta(c)=-0.114(16) for the spin and chiral stiffness exponents, respectively.  相似文献   

5.
The charge-exchange reaction 60Ni(13C,13N)60Co at E/A=100 MeV has been studied to locate isovector (deltaT=1) non-spin-flip (deltaS=0) giant resonances. Besides the giant dipole resonance at E(x)=8.7 MeV, another resonance has been observed at E(x)=20 MeV with a width of 9 MeV. Distorted-wave Born approximation analysis on the angular distribution clearly indicated the L=2 multipolarity, attributing the E(x)=20 MeV state to the giant isovector quadrupole resonance.  相似文献   

6.
We study the optimal distance in networks, l(opt), defined as the length of the path minimizing the total weight, in the presence of disorder. Disorder is introduced by assigning random weights to the links or nodes. For strong disorder, where the maximal weight along the path dominates the sum, we find that l(opt) approximately N(1/3) in both Erdos-Rényi (ER) and Watts-Strogatz (WS) networks. For scale-free (SF) networks, with degree distribution P(k) approximately k(-lambda), we find that l(opt) scales as N((lambda-3)/(lambda-1)) for 3 or =4. Thus, for these networks, the small-world nature is destroyed. For 2相似文献   

7.
In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7 x 10(4) and Re=10(6) after having injected (i) small bubbles (R=1 mm) up to a volume concentration of alpha=5% and (ii) buoyant particles (rhop/rhol=0.14) of comparable volume concentration. In case (i) we observe a crossover from little drag reduction at smaller Re to strong drag reduction up to 20% at Re=10(6). In case (ii) we observe at most little drag reduction throughout. Several theoretical models for bubbly drag reduction are discussed in view of our findings.  相似文献   

8.
We consider the optimal paths in a d-dimensional lattice, where the bonds have isotropically correlated random weights. These paths can be interpreted as the ground state configuration of a simplified polymer model in a random potential. We study how the universal scaling exponents, the roughness and the energy fluctuation exponent, depend on the strength of the disorder correlations. Our numerical results using Dijkstra's algorithm to determine the optimal path in directed as well as undirected lattices indicate that the correlations become relevant if they decay with distance slower than 1/r in d = 2 and 3. We show that the exponent relation 2ν - ω = 1 holds at least in d = 2 even in case of correlations. Both in two and three dimensions, overhangs turn out to be irrelevant even in the presence of strong disorder correlations. Received 20 December 2002 / Received in final form 10 April 2003 Published online 20 June 2003 RID="a" ID="a"e-mail: schorr@lusi.uni-sb.de  相似文献   

9.
The nu(2) (A(1), 710.157 cm(-1)) and nu(5) (E, 701.717 cm(-1)) fundamental bands of D(3)(28)SiF have been studied by FTIR spectroscopy with a resolution of 2.4 x 10(-3) cm(-1). We assigned 1648 lines for the parallel band (J(max) = 50, K(max) = 21), 4279 for the perpendicular band (J(max) = 52, K(max) = 27), and in addition 671 perturbation-allowed transitions (J(max) = 50, K(max) = 12). The nearly degenerate v(2) = 1 and v(5) = 1 states are linked by (DeltaK = +/-1, Deltal = +/-1) and (DeltaK = +/-2, Deltal = -/+1) interactions, while the l(5) = +/-1 levels of nu(5) interact also by l(2, -1), l(2, 2), and l(2, -4) interactions. The first model with 36 free parameters, taking into account all these resonances through a nonlinear least-squares program, gave standard deviations of 1.56 x 10(-4) cm(-1) for 5997 nonzero-weighted IR data and 138 kHz for 8 MW data from the literature. The second model, in which the main Coriolis term was constrained to a force field value, used 37 parameters and gave similar standard deviations. A new determination of the A(0) and D(0)(K) ground state parameters was performed by two methods: either using differences between "forbidden" transitions differing by 3 in K or letting A(0) and D(0)(K) free in the global fit. The values obtained are fully compatible with those obtained previously by the "loop method." Copyright 2000 Academic Press.  相似文献   

10.
The crossover from orthogonal to the unitary universality classes in the distribution of the anomalously localized states (ALS) in two-dimensional disordered conductors is traced as a function of magnetic field. We demonstrate that the microscopic origin of the crossover is the change in the symmetry of the underlying disorder configurations that are responsible for ALS. These disorder configurations are of weak magnitude (compared to the Fermi energy) and of small size (compared to the mean free path). We find their shape explicitly by means of the direct optimal fluctuation method.  相似文献   

11.
Path integral representations for the quantum microcanonical ensemble are presented. In the quantum microcanonical ensemble, two operators are of primary interest. First, rhoinsertion mark=delta(E-Hinsertion mark) corresponds to the microcanonical density matrix and can be used to calculate expectation values. Second, Ninsertion mark=Theta(E-Hinsertion mark) can give the number of states with energy E(n) and Theta(x,x('),E)=. A path integral formalism leads to exact integral representations for Omega(x,x('),E) and Theta(x,x('),E). We present both phase space and configuration space forms. For simple systems, such as the free particle and harmonic oscillator, exact solutions are possible. For more complicated systems, expansion schemes or numerical evaluations are required. A perturbative calculation and numerical integration results are presented for the quantum anharmonic oscillator.  相似文献   

12.
13.
Our velocity measurements on quasi-two-dimensional turbulent flow in a rapidly rotating annulus yield self-similar (scale-independent) probability distribution functions for longitudinal velocity differences, deltav(l) = v(x+l)-v(x). These distribution functions are strongly non-Gaussian, suggesting that the coherent vortices play a significant role. The structure functions <[deltav(l)](p)> approximately l(zeta)p exhibit anomalous scaling: zeta(p) = p / 2 rather than the expected zeta(p) = p / 3. Correspondingly, the energy spectrum is described by E(k) approximately k(-2) rather than the expected E(k) approximately k(-5/3).  相似文献   

14.
Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with system size L and localization length l in the strong disorder limit. However, classical systems can always have metallic states in which Ohm’s law shows a constant g in d=2. We study a two-dimensional quantum percolation model by controlling dephasing effects. The numerical investigation of g aims at simulating a quantum-to-classical percolation evolution. An unexpected metallic phase, where g increases with L, generates immense interest before the system becomes completely classical. Furthermore, the analysis of the scaling plot of g indicates a metal-insulator crossover.  相似文献   

15.
We numerically study the wetting (adsorption) transition of a polymer chain on a disordered substrate in 1+1 dimension. Following the Poland-Scheraga model of DNA denaturation, we use a Fixman-Freire scheme for the entropy of loops. This allows us to consider chain lengths of order N ∼105 to 106, with 104 disorder realizations. Our study is based on the statistics of loops between two contacts with the substrate, from which we define Binder-like parameters: their crossings for various sizes N allow a precise determination of the critical temperature, and their finite size properties yields a crossover exponent φ=1/(2-α) ≃0.5. We then analyse at criticality the distribution of loop length l in both regimes l ∼O(N) and 1 ≪l ≪N, as well as the finite-size properties of the contact density and energy. Our conclusion is that the critical exponents for the thermodynamics are the same as those of the pure case, except for strong logarithmic corrections to scaling. The presence of these logarithmic corrections in the thermodynamics is related to a disorder-dependent logarithmic singularity that appears in the critical loop distribution in the rescaled variable λ=l/N as λ↦1.  相似文献   

16.
We study heat transport in quasi-one-dimensional spin-chain systems by considering the model of one-dimensional bosonic spin excitations interacting with three-dimensional phonons and impurities in the limit of weak spin-lattice coupling and fast spin excitations. A combined effect of the phonon and impurity scatterings yields the following spin-boson thermal conductivity behavior: kappa(s) proportional to T2 at low, kappa(s) proportional to T-1 at intermediate, and kappa(s)= const at higher temperatures. Our results agree well with the existing experimental data for Sr2CuO3. We predict an unusual dependence on the impurity concentration for a number of observables and propose further experiments.  相似文献   

17.
分子束外延HgCdTe材料的光致发光研究   总被引:2,自引:2,他引:0  
姬荣斌  常勇  王善力  杨建荣  何力 《光学学报》1999,19(9):284-1288
报道了分子束外延生长 Hg0.68 Cd0.32 Te 材料的光致发光测量结果。研究了原生样品和退火处理样品、以及氮离子注入样品的低温光致发光特征。对光致发光的测试结果进行拟合得到的禁带宽度, 与用红外透射谱得到的薄膜禁带宽相近; 其半峰宽和带尾能量较小, 显示了较高的薄膜质量。样品经过退火后带尾能量降低, 双晶衍射的半峰宽也有明显的变窄  相似文献   

18.
We show that the spin degree of freedom plays a decisive role in the phase diagram of the nu(T)=1 bilayer electron system using an in-plane field B( parallel) in the regime of negligible tunneling. We observe that the phase boundary separating the quantum Hall and compressible states at d/l(B) = 1.90 for B(parallel) = 0 (d: interlayer distance, l(B): magnetic length) steadily shifts with B(parallel) before saturating at d/l(B) = 2.33 when the compressible state becomes fully polarized. Using a simple model for the energies of the competing phases, we can quantitatively describe our results. A new phase diagram as a function of d/l(B) and the Zeeman energy is established and its implications as to the nature of the phase transition are discussed.  相似文献   

19.
We calculate the Hall conductivity sigma(xy) and resistivity rho(xy) of a granular system at large tunneling conductance g(T)>1. We show that in the absence of Coulomb interaction the Hall resistivity depends neither on the tunneling conductance nor on the intragrain disorder and is given by the classical formula rho(xy)=H/(n*ec), where n* differs from the carrier density n inside the grains by a numerical coefficient determined by the shape of the grains. The Coulomb interaction gives rise to logarithmic in temperature T correction to rho(xy) in the range Gamma less or similar T less or similar min(g(T)E(c), E(Th)), where Gamma is the tunneling escape rate, E(c) is the charging energy, and E(Th) is the Thouless energy of the grain.  相似文献   

20.
The thermal conductivity kappa is measured in a series of La2-xSrxCuO4 (0 < or = x < or = 0.22) single crystals down to 90 mK to elucidate the evolution of the residual electronic thermal conductivity kappa(res), which probes the extended quasiparticle states in the d-wave gap. We found that kappa(res)/T grows smoothly, except for a 1/8 anomaly, above x approximately 0.05, and shows no discontinuity at optimum doping, indicating that the behavior of kappa(res)/T is not governed by the metal-insulator crossover in the normal state; as a result, kappa(res)/T is much larger than what the normal-state resistivity would suggest in the underdoped region, which highlights the peculiarities in the low-energy physics in the cuprates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号